Skip to main content
Log in

Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This work is devoted to the time-fractional differential equations with the regularized Prabhakar derivative and their analytical solutions. We generalize the invariant subspace method to find the exact solutions of such equations. Then, we apply this method to obtain the exact solutions of different time-fractional nonlinear differential equations including the regularized Prabhakar derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, \(\star \) stands for the convolution.

References

  • Agarwal R, Jain S, Agarwal RP (2017) Analytic solution of generalized space time fractional reaction diffusion equation. Fract Differ Calc 7:169–184

    MathSciNet  MATH  Google Scholar 

  • Agarwal P, Al-Mdallal Q, Cho Y, Jain S (2018) Fractional differential equations for the generalized Mittag-Leffler function. Adv Differ Equ 58(2018):1–8

    MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Hristova S, O’Regan D (2020) Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. Rock Mt J Math 50(3):779–791

    MathSciNet  MATH  Google Scholar 

  • Akinyemi L, Ullah N, Akbar Y, Hashemi MS, Akbulut A, Rezazadeh H (2021) Explicit solutions to nonlinear chen-lee-liu equation. Mod Phys Lett B 35(25):2150438

    Article  MathSciNet  Google Scholar 

  • An J, Hese EV, Baes M (2012) Phase-space consistency of stellar dynamical models determined by separable augmented densities. Mon Not R Astron Soc 422(1):652–664

    Article  Google Scholar 

  • Bin Z (2012) (\(G^{\prime }/G\))-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun Theor Phys 58(5):623

    MathSciNet  MATH  Google Scholar 

  • Bulavatsky VM (2017) Mathematical modeling of fractional differential filtration dynamics based on models of Hilfer-Prabhakar derivatives. Cybern Syst Anal 53(2):204–216

    Article  MathSciNet  MATH  Google Scholar 

  • Chamati H, Tonchev N (2012) Generalized Mittag–Leffler functions in the theory of finite-size scaling for systems with strong anisotropy and/or long-range interaction. J Phys A: Math Gen 39(3):1–14

    MathSciNet  MATH  Google Scholar 

  • De Oliveira JVEC, Mainardi F (2011) Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur Phys J Spec Top 193(1):161–171

    Article  Google Scholar 

  • Diethelm K, Garrappa R, Giusti A, Stynes M (2020) Why fractional derivatives with nonsingular kernels should not be used. Fract Calc Appl Anal 23(3):610–634

    Article  MathSciNet  MATH  Google Scholar 

  • D’Ovidio M, Polito F (2018) Fractional diffusion-telegraph equations and their associated stochastic solutions. Theory Probab Appl 62(4):552–574

    Article  MathSciNet  MATH  Google Scholar 

  • Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher transcendental functions. McGraw- Hill, New York

    MATH  Google Scholar 

  • Eshaghi S, Ansari A (2015) Autoconvolution equations and generalized Mittag–Leffler functions. Int J Ind Math 7(4):335–341

    Google Scholar 

  • Eshaghi S, Ansari A (2016) Lyapunov inequality for fractional differential equations with Prabhakar derivative. Math Inequal Appl 19(1):349–358

    MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2017) Finite fractional Sturm-Liouville transforms for generalized fractional derivatives. Iran J Sci Tech 41(4):931–937

    Article  MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A, Ghaziani RK, Darani MA (2017) Fractional Black-Scholes model with regularized Prabhakar derivative. Publications De L’institut Mathematique 102(116):121–132

    Article  MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ghaziani RK, Ansari A (2019) Stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay. Math Methods Appl Sci 42(7):2302–2323

    Article  MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ghaziani RK, Ansari A (2020) Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems. Comput Appl Math 39(4):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A, Ghaziani RK (2021) Generalized Mittag–Leffler stability of nonlinear fractional regularized Prabhakar differential systems. Int J Nonlinear Anal Appl 12(2):665–678

    Google Scholar 

  • Fernandez A, Baleanu D, Srivastava H (2019) Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun Nonlinear Sci Numer Simul 67:517–527

    Article  MathSciNet  MATH  Google Scholar 

  • Galaktionov VA, Svirshchevskii SR (2007) Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science, New York

    MATH  Google Scholar 

  • Garra R, Garrappa R (2018) The Prabhakar or three parameter Mittag–Leffler function: theory and application. Commun Nonlinear Sci Numer Simul 56:314–329

    Article  MathSciNet  MATH  Google Scholar 

  • Garra R, Gorenflo R, Polito F, Tomovski Z (2014) Hilfer-Prabhakar derivatives and some applications. Appl Math Comput 242:576–589

    MathSciNet  MATH  Google Scholar 

  • Garrappa R (2016) Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun Nonlinear Sci Numer Simul 38:178–191

    Article  MathSciNet  MATH  Google Scholar 

  • Garrappa R, Mainardi F, Maione G (2016) Models of dielectric relaxation based on completely monotone functions. Fract Calc Appl Anal 19(5):1105–1160

    Article  MathSciNet  MATH  Google Scholar 

  • Gazizov R, Kasatkin A (2013) Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput Math Appl 66(5):576–84

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti A (2018) A comment on some new definitions of fractional derivative. Nonlinear Dyn 93:1757–1763

    Article  MATH  Google Scholar 

  • Giusti A, Colombaro I (2018) Prabhakar-like fractional viscoelasticity. Commun Nonlinear Sci Numer Simul 56:138–143

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti A, Colombaro I, Garra R, Garrappa R, Polito F, Popolizio M, Mainardi F (2020) A practical guide to Prabhakar fractional calculus. Fract Calc Appl Anal 23(1):9–54

    Article  MathSciNet  MATH  Google Scholar 

  • Gorenflo FMSRR, Kilbas AA (2020) Mittag-Leffler functions, related topics and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Gupta RK, Shaktawat BS, Kumar D (2016) Certain relation of generalized fractional calculus associated with the generalized Mittag–Leffler function. J Rajasthan Acad Phys Sci 15(3):117–126

    MathSciNet  MATH  Google Scholar 

  • Hashemi MS (2018) Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos Solit Fract 107:161–169

    Article  MathSciNet  MATH  Google Scholar 

  • Hashemi MS, Baleanu D (2020) Lie symmetry analysis of fractional differential equations. CRC Press, New York

    Book  MATH  Google Scholar 

  • Hashemi MS, Balmeh Z (2018) On invariant analysis and conservation laws of the time fractional variant boussinesq and coupled boussinesq-burger’s equations. Eur Phys J Plus 133(10):1–11

    Article  Google Scholar 

  • Hashemi MS, Inc M, Kilic B, Akgül A (2016) On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves Random Complex Media 26(3):259–271

    Article  MathSciNet  MATH  Google Scholar 

  • Hashemi MS, İnç M, Bayram M (2019) Symmetry properties and exact solutions of the time fractional kolmogorov-petrovskii-piskunov equation. Revista mexicana de física 65(5):529–535

    Article  MathSciNet  Google Scholar 

  • Hashemi MS, Haji-Badali A, Alizadeh F et al (2021) Nonclassical lie symmetry and conservation laws of the nonlinear time-fractional korteweg-de vries equation. Commun Theor Phys 73(9):095006

    Article  MathSciNet  Google Scholar 

  • He Z-Y, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y (2022) Fractional-order discrete-time sir epidemic model with vaccination: Chaos and complexity. Mathematics 10(2):165

    Article  Google Scholar 

  • Hilfer R, Seybold H (2006) Computation of the generalized Mittag–Leffler function and its inverse in the complex plane. Integral Transf Spec Funct 17:637–652

    Article  MathSciNet  MATH  Google Scholar 

  • Iqbal MA, Wang Y, Miah MM, Osman MS (2021) Study on date-jimbo-kashiwara-miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fract Fract 6(1):4

    Article  Google Scholar 

  • Jin F, Qian Z-S, Chu Y-M, ur Rahman M (2022) On nonlinear evolution model for drinking behavior under caputo-fabrizio derivative J Appl Anal Comput 12(2):790–806

  • Karthikeyan K, Karthikeyan P, Baskonus HM, Venkatachalam K, Chu Y-M (2021) Almost sectorial operators on \(\psi \)-hilfer derivative fractional impulsive integro-differential equations. Math Methods Appl Sci

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transf Spec Funct 15:31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Najafi R, Bahrami F, Hashemi MS (2017) Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dyn 87(3):1785–1796

    Article  MathSciNet  MATH  Google Scholar 

  • Ouhadan A, Kinani EE (2016) Invariant subspace method and some exact solutions of time fractional modified Kuramoto-Sivashinsky equation. Br J Math Comput Sci 15(4)

  • Pandey SC (2021) On some computable solutions of unified families of fractional differential equations. São Paulo J Math Sci 1–29

  • Pandey SC (2018) The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. Comput Appl Math 37:2648–2666

    Article  MathSciNet  MATH  Google Scholar 

  • Pashayi S, Hashemi MS, Shahmorad S (2017) Analytical Lie group approach for solving fractional integro-differential equations. Commun Nonlinear Sci Numer Simul 51:66–77

    Article  MathSciNet  MATH  Google Scholar 

  • Pogány TK, Tomovski Z (2016) Probability distribution built by Prabhakar function. Related Turán and Laguerre inequalities. Integr Transf Spec Funct 27(10):783–793

    Article  MATH  Google Scholar 

  • Polito F, Scalas E (2016) A generalization of the space-fractional Poisson process and its connection to some Lévy processes. Electron Commun Probab 21(20):1–12

    MATH  Google Scholar 

  • Polito F, Tomovski Z (2016) Some properties of Prabhakar-type fractional calculus operators. Fract Differ Calc 6(1):73–94

    MathSciNet  MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag–Leffler function in the kernel, Yokohama. J Math 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Saad KM, AL-Shareef EHF, Alomari AK, Baleanude D, Gómez-Aguilar JF (2020) On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method. Chin J Phys 63:149–162

  • Sahadevan R, Bakkyaraj T (2015) Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations. Fract Calc Appl Anal 18(1):146–62

    Article  MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2016) Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn 85(1):659–73

    Article  MathSciNet  MATH  Google Scholar 

  • Sahadevan R, Prakash P (2017) Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul 42:158–77

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo SRS (2015) Improved fractional sub-equation method for (3+1)-dimensional generalized fractional Kdv-Zakharov-Kuznetsov equations. Comput Math Appl 70(2):158–166

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo SRS (2016) Solitary wave solutions for time fractional third order modified kdv equation using two reliable techniques (\(G^{\prime }/G\))-expansion method and improved (\(G^{\prime }/G\))-expansion method. Phys A 448:265–282

    Article  MathSciNet  MATH  Google Scholar 

  • Sandev T (2017) Generalized Langevin Equation and the Prabhakar Derivative. Mathematics 5(4):1–11

    Article  MATH  Google Scholar 

  • Sarwar TSNPTMN, Asjad MI (2021) A Prabhakar fractional approach for the convection flow of Casson fluid across an oscillating surface based on the generalized Fourier law. Symmetry 13(11):2039

    Article  Google Scholar 

  • Saxena R, Pagnini G (2011) Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I, the accelerating case. Phys A 390(4):602–613

    Article  MathSciNet  Google Scholar 

  • Seybold HJ, Hilfer R (2005) Numerical results for the generalized Mittag-Leffler function. Fract Calc Appl Anal 8:127–139

    MathSciNet  MATH  Google Scholar 

  • Srivastava H, Tomovski Z (2009) Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl Math Comput 211:198–210

    MathSciNet  MATH  Google Scholar 

  • Tarasov V (2020) Fractional nonlinear dynamics of learning with memory. Nonlinear Dyn 100:1231–1242

    Article  MATH  Google Scholar 

  • Tarasov V (2022) fractional dynamics with depreciation and obsolescence: equations with Prabhakar fractional derivatives. Mathematics 10(9):2039

    Article  Google Scholar 

  • Tomovski Z, Hilfer R, Srivastava H (2010) Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Fractional Calculus and Applied. Analysis 21:797–814

    MATH  Google Scholar 

  • Xia F-L, Jarad F, Hashemi MS, Riaz MB (2022) A reduction technique to solve the generalized nonlinear dispersive mk (m, n) equation with new local derivative. Results Phys 38:105512

    Article  Google Scholar 

  • Xu J (2017) Time-fractional particle deposition in porous media. J Phys A: Math Theor 50(19):195002

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H-QZS (2011) Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys Lett A 375(7):1069–1073

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang ZY, Li GF (2020) Lie symmetry analysis and exact solutions of the time-fractional biological population model. Phys A 540(15):123–134

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Additional information

Communicated by Roberto Garrappa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Inc, M., Hashemi, M.S. et al. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comp. Appl. Math. 41, 271 (2022). https://doi.org/10.1007/s40314-022-01977-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01977-1

Keywords

Mathematics Subject Classification

Navigation