Skip to main content
Log in

The Lorenzo–Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Considering the applications and a great significance of the study pertaining to generalized functions in applied sciences, the author investigated the Lorenzo–Hartley’s function which is a generalization of classical functions widely used in fractional calculus. The Laplace transform pairs are derived and the requirements for the Lorenzo–Hartley’s function \(G_{\nu , \mu ,\delta }(a,c,t)\) to be completely monotonic (for \(t > 0\)) are investigated. The author has shown the applications of this generalized function to describe the relaxation models, particularly in dielectrics. The Lorenzo–Hartley’s function \(G_{\nu , \mu ,\delta }(a,c,t)\) of a real variable t is considered to investigate a computable mathematical framework for standard Debye and non-Debye relaxation processes in dielectric materials. The non-negative spectral distribution function is obtained for the corresponding response function. It is also demonstrated that the classical models like Cole–Cole (C–C), Davidson–Cole (D–C), and Havriliak–Negami (H–N) for non-Debye relaxation and standard Debye relaxation are the particular cases of the Lorenzo–Hartley’s function. Some of the study cases are also worked out to visualize the effects of variations of parameters on the response function and corresponding spectral distribution function. A generalized and unified fractional relaxation differential equation which governs response functions for classical dielectrics models pertaining to non-Debye relaxation (C–C, D–C, and H–N) is also established in the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal RP (1953) A Propos dune note de M. Pierre Humbert. C R Acad Sci Paris 236:2031–2032

    MathSciNet  MATH  Google Scholar 

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • de Oliveira E, Mainardi F, Vaz J Jr (2011) Models based on Mittag–Leffler functions for anomalous relaxation in dielectrics. Eur Phy J Spec Top 193:161–171

    Article  Google Scholar 

  • de Oliveira EC, Mainardi F, Vaz J Jr (2014) Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49:2049–2060

    Article  MathSciNet  MATH  Google Scholar 

  • Chaurasia VBL, Pandey SC (2010) Computable extensions of generalized fractional kinetic equations in astrophysics research in astron. Astrophysics 10(1):22–32

    Google Scholar 

  • Chaurasia VBL, Pandey SC (2008) On a new computable solution of generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys Sp Sci 317:213–219

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

  • Cole KS, Cole RH (1942) Dispersion and absorption in dielectrics. II. Direct current characteristics. J Chem Phys 10:98–105

    Article  Google Scholar 

  • Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol and n-propanol. J Chem Phys 19:1484–1490

    Article  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. an application-oriented exposition using differential operators of Caputo type. Springer Lecture Notes in Mathematics No. 2004. Springer, Berlin

  • Goufo D, Franc E (2015) A biomathematical view on the fractional dynamics of cellulose degradation. Fract Calc Appl Anal 18(3):554–564

    MathSciNet  MATH  Google Scholar 

  • Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1954) Tables of integral transforms, vol 2. McGraw-Hill, New York

    MATH  Google Scholar 

  • Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV (2014) Mittag–Leffler functions, related topics and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics. Springer, Wien, pp 223–276. arXiv:0805.3823

  • Gripenberg G, Londen SO, Staffans OJ (1990) Volterra integral and functional equations. Cambridge University Press, Cambridge, pp 143–147

  • Hanyga A, Seredyńska M (2008) On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation. J Stat Phys 131:269–303

    Article  MathSciNet  MATH  Google Scholar 

  • Hartley TT, Lorenzo CF (1998) A solution to the fundamental linear fractional order differential equation. NASA/TP-1998-208963

  • Havriliak S, Negami S (1996) Comparison of the Havriliak–Negami and stretched exponential functions. Polymer 37(18):4107–4110

    Article  Google Scholar 

  • Havriliak S Jr, Negami S (1966) A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J Polym Sci 14:99–117

    Google Scholar 

  • Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  Google Scholar 

  • Hilfer H (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Hilfer H (2002) Analytical representations for relaxation functions of glasses. J Non Cryst Solids 305:122–126

    Article  Google Scholar 

  • Hilfer H (2002) H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys Rev E 65:061510/1–061510/5

    Article  Google Scholar 

  • Hilfer R (2003) On fractional relaxation. Fractals 11:251–257

    Article  MathSciNet  MATH  Google Scholar 

  • Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics, London

    Google Scholar 

  • Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics, London

    Google Scholar 

  • Jurlewicz A, Weron K (2002) Relaxation of dynamically correlated clusters. J Non Cryst Solids 305:112–121

    Article  Google Scholar 

  • Jurlewicz A, Weron K, Teuerle M (2008) Generalized Mittag–Leffler relaxation: clustering-jump continuous-time random walk approach. Phys Rev E 78:011103/1–011103/8

    Article  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Lorenzo CF (2009) The fractional meta-trigonometry based on the R-function. I. Background, definitions, and complexity function graphics. In: Proc. DETC/CIE 2009, ASME Int. Design Engineering Technical Conf., San Diego, CA, DETC2009-86731

  • Lorenzo CF (2009) The fractional meta-trigonometry based on the R-function. II. Parity function graphics, Laplace transforms, fractional derivatives, meta-properties. In: Proc. DETC/CIE 2009, ASME Int. Design Engineering Technical Conf., San Diego, CA, DETC2009-86733

  • Lorenzo CF, Hartley TT (2015) Application of the principal fractional meta-trigonometric functions for the solution of linear commensurat-order time-invariant fractional equations. Philos Trans R Soc A 371:20120151

    Article  MATH  Google Scholar 

  • Lorenzo CF, Malti R, Hartley TT (2011) The solution of linear fractional differential equations using the fractional meta-trigonometric functions. In: Proc. ASME Int. Design Engineering Technical Conf., Washington, DC, DETC2011-47395

  • Lorenzo CF, Hartley TT (1999) Generalized functions for the fractional calculus. NASA TP, 209424

  • Lorenzo CF, Hartley TT (2004) Fractional trigonometry and the spiral functions. Nonlinear Dyn 38:23–60

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzo CF, Hartley TT (2017) The fractional trigonometry: with application to fractional differential equations and science. Wiley, Hoboken

    MATH  Google Scholar 

  • Mahmood A, Parveen S, Ara A, Khan NA (2009) Exact analytic solution for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun Nonlinear Sci Numer Simulat 14:3309–3319

    Article  MATH  Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Mainardi F, Garrappa R (2015) On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J Comput Phys 293:70–80

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai AM, Haubold HJ (2008) Special functions for applied scientists. Springer, New York

  • Mathai AM, Saxena RK, Haubold HJ (2008) The H-function. Theory and applications. Springer, Amsterdam

    MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Miller KS, Samko SG (1997) A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal Exch 23:753–755

    MathSciNet  MATH  Google Scholar 

  • Miller KS, Samko SG (2001) Completely monotonic functions. Integr Transforms Spec Funct 12:389–402

    Article  MathSciNet  MATH  Google Scholar 

  • Mittag–Leffler GM (1903) Sur la nouvelle fonction \(E_{\alpha }(x)\). C R Acad Sci Paris Ser 2 137:554–558

    MATH  Google Scholar 

  • Mittag–Leffler GM (1905) Sur la representation analytique dune function branche uniforme dune fonction. Acta Math 29:101–181

    Article  MathSciNet  MATH  Google Scholar 

  • Nigmatullin R, Ryabov Y (1997) Cole-Davidson dielectric relaxation as a self similar relaxation process. Phys Solid State 39(1):87–90

    Article  Google Scholar 

  • Nonnenmacher T, Glöckle W (1991) A fractional model for mechanical stress relaxation. Philos Mag Lett 64(2):89–93

    Article  Google Scholar 

  • Novikov VV, Wojciechowski KW, Komkova OA, Thiel T (2005) Anomalous relaxation in dielectrics Equations with fractional derivatives. Mater Sci Poland 23:977–984

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  • Pollard H (1948) The completely monotonic character of the Mittag-Leffler function \(E_{\alpha }(-x)\). Bull Am Math Soc 54:1115–1116

    Article  MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag-Leffer function in the kernel. Yokohama Math J 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Ryabov YE, Feldman Y (2002) Novel approach to the analysis of the non-Debye dielectric spectrum broadening. Phys A 314:370–378

    Article  Google Scholar 

  • Saha UK, Arora LK, Arora AK (2009) On the relationships of the R function of Lorenzo and Hartley with other special functions of fractional calculus. Fract Calc Appl Anal 12(4):453–458

    MathSciNet  MATH  Google Scholar 

  • Saxena RK, Ram J, Kumar D (2013) Alternative derivation of generalized fractional kinetic equations. J Fract Calc Appl 4(2):322–334

    Google Scholar 

  • Schneider WR (1996) Completely monotone generalized Mittag–Leffler functions. Expos Math 14:3–16

    MathSciNet  MATH  Google Scholar 

  • Shakeel A, Ahmad S, Khan H, Vieru H (2016) Solutions with Wright functions for time fractional convection flow near a heated vertical plate. Adv Diff Equ 51:1–11

    MathSciNet  Google Scholar 

  • Sibatov RT, Uchaikin DV (2010) Fractional relaxation and wave equations for dielectric characterized by the Havriliak–Negami response function, p 5. arXiv:1008.3972

  • Stanislavsky A, Weron K, Trzmiel J (2010) Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. EPL 91:40003/1–40003/6

    Article  Google Scholar 

  • Szabat B, Weron K, Hetman P (2007) Heavy-tail properties of relaxation time distributions underlying the Havriliak–Negami and the Kohlrausch–Williams-Watts relaxation patterns. J Non Cryst Solids 353(47–51):4601–4607

    Article  Google Scholar 

  • Weron K, Jurlewicz A, Magdziarz M (2005) Havriliak–Negami response in the framework of the continuous-time random walk. Acta Phyisica Polonica B 36:1855–1868

    Google Scholar 

  • Weron K, Kotulski M (1996) On the Cole–Cole relaxation function and related Mittag–Leffler distribution. Phys A 232:180–188

    Article  Google Scholar 

  • Wiman A (1905) Uber den Fundamentalsatz in der Theorie der Functionen \(E_{\alpha }(x)\). Acta Math 29:191–201

    Article  MathSciNet  MATH  Google Scholar 

  • Zemanian AH (1972) Realizability theory for continuous linear systems. Academic, San Diego

    MATH  Google Scholar 

Download references

Acknowledgements

The author is thankful to Professor (Dr.) A. M. Mathai, of the McGill University, Montreal, Canada, Professor (Dr.) H. J. Haubold of the United Nations, and Professor (Dr.) Francesco Mainardi (Bologna) for their valuable suggestions and kind guidance in the SERC Schools 2010–2011, at CMS Pala, India. The author is also thankful to the anonymous referees for their useful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Pandey.

Additional information

Communicated by José Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.C. The Lorenzo–Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. Comp. Appl. Math. 37, 2648–2666 (2018). https://doi.org/10.1007/s40314-017-0472-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0472-7

Keywords

Mathematics Subject Classification

Navigation