Skip to main content
Log in

Finite Fractional Sturm–Liouville Transforms For Generalized Fractional Derivatives

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this article, we introduce the regular and singular fractional Sturm–Liouville problems with the Hilfer and Hilfer–Prabhakar derivatives. We show that these problems with the corresponding boundary conditions have real eigenvalues and their eigenfunctions are orthogonal. Also, the finite fractional Sturm–Liouville transforms and their inversion formulas are established, and as an application, the formal solution of the fractional Laplace equation in prolate spheroidal coordinates is obtained using the finite Legendre transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York

    MATH  Google Scholar 

  • Askari H, Ansari A (2016) Fractional calculus of variations with a generalized fractional derivative. Fract Differ Calc 6(1):57–72

    Article  MathSciNet  Google Scholar 

  • Ansari A (2015a) On finite fractional Sturm–Liouville transforms. Integral Transform Spec Funct 26(1):51–64

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari A (2015b) Some inverse fractional Legendre transforms of gamma function form. Kodai Math J 38:658–671

    Article  MathSciNet  MATH  Google Scholar 

  • Bas E, Metin F (2013) Fractional singular Sturm–Liouville operator for Coulomb potential. Adv Differ Equ. https://doi.org/10.1186/1687-1847-1-13 2013-300

  • Eshaghi S, Ansari A (2015) Autoconvolution equations and generalized Mittag-Leffler functions. Int J Indus Math 7(4):335–341

    Google Scholar 

  • Eshaghi S, Ansari A (2016) Lyapunov inequality for fractional differential equations with Prabhakar derivative. Math Inequal Appl 19(1):349–358

    MathSciNet  MATH  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Hilfer R, Luchko Y, Tomovski Z (2009) Operational method for solution of the fractional differential equations with the generalized Riemann–Liouville fractional derivatives. Fract Calc Appl Anal 12:299–318

    MathSciNet  MATH  Google Scholar 

  • Churchill CRV (1953) New operational mathematics the operational calculus of Legendre transforms. Technical Report No.1, Project 2137 Ordnance Corps, US Army, Contract No. DA-20-018-ORD-12916, August, 1953

  • Debnath L, Bhatta D (2007) Integral transforms and their applications, 2nd ed. Chapman & Hall/CRC, Taylor & Francis Group, New York

  • Erturk VS (2011) Computing eigenelements of Sturm–Liouville problems of fractional order via fractional differential transform method. Math Comput Appl 16:712–720

    MathSciNet  MATH  Google Scholar 

  • Garra R, Gorenflo R, Polito F, Tomovski Z (2014) Hilfer–Prabhakar derivatives and some applications. Appl Math Comput 242:576–589

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Klimek M, Agrawal OP (2012) On a regular fractional Sturm–Liouville problem with derivatives of order in (0,1). In: Proceedings of the 13th international carpathian control conference, Vysoke Tatry (Podbanske), Slovakia, 28–31 May

  • Klimek M, Agrawal OP (2013) Fractional Sturm–Liouville problem. Comput Math Appl 66:795–812

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedev NN, Uflyand YS, Skalskaya IP (1965) Worked problems in applied mathematics. Dover, New York

    MATH  Google Scholar 

  • D’Ovidio M (2012) From Sturm–Liouville problems to fractional and anomalous diffusions. Stoch Process Appl 122:3513–3544

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math J 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Rivero M, Trujillo JJ, Velasco MP (2013) A fractional approach to the Sturm–Liouville problem. Cent Eur J Phys 11(10):1246–1254

    Google Scholar 

  • Sneddon IN (1979) The use of integral transforms. Mac Graw-Hill, New York

    MATH  Google Scholar 

  • Srivastava HM, Tomovski Z (2009) Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl Math Comput 211(1):198–210

    MathSciNet  MATH  Google Scholar 

  • Tomovski Z, Hilfer R, Srivastava HM (2010) Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transf Spec Funct 21(11):797–814

    Article  MathSciNet  MATH  Google Scholar 

  • Tranter CJ (1950) Legendre transforms. Q J Math Oxf J 1(2):1–8

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their constructive comments on earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghi, S., Ansari, A. Finite Fractional Sturm–Liouville Transforms For Generalized Fractional Derivatives. Iran J Sci Technol Trans Sci 41, 931–937 (2017). https://doi.org/10.1007/s40995-017-0311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0311-0

Keywords

Mathematics Subject Classification

Navigation