Skip to main content
Log in

Fractional nonlinear dynamics of learning with memory

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider generalization of the Lucas model of learning (learning-by-doing) that is described in the paper Robert E. Lucas (Econometrica 61(2):251–272, 1993), who was awarded the Nobel Prize in Economic Sciences in 1995. The model equation is nonlinear differential equation of the first order used in macroeconomics to explain effects of innovation and technical change. In the standard learning model, the memory effects and memory fading are not taken into account. We propose the learning models that take into account fading memory. Fractional differential equations of the suggested models contain fractional derivatives with the generalized Mittag–Leffler function (the Prabhakar function) in the kernel and their special case containing the Caputo fractional derivative. These nonlinear fractional differential equations, which describe the learning-by-doing with memory, and the expressions of its exact solutions are suggested. Based on the exact solution of the model equation, we show that the estimated productivity growth rate can be changed by memory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romer, D.: Advanced Macroeconomics, 3rd edn. McGraw-Hill, Boston (2006). 678 pages. ISBN: 978-0-07-287730-4; 0-07-287730-8

    Google Scholar 

  2. Lucas Jr., R.E.: Lectures on Economic Growth. Harvard University Press, Cambridge and London (2002). 204 pages. ISBN: 0-674-00627-5

    Google Scholar 

  3. Lucas Jr., R.E.: Making a miracle. Econometrica. 61(2), 251–272 (1993). https://doi.org/10.2307/2951551

    Article  MATH  Google Scholar 

  4. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1995. NobelPrize.org. Nobel Media AB 2019. https://www.nobelprize.org/prizes/economic-sciences/1995/summary/

  5. The Royal Swedish Academy of Sciences (1995). The Scientific Contributions of Robert E. Lucas, Jr. https://www.nobelprize.org/prizes/economic-sciences/1995/advanced-information/

  6. Tarasova, V.V., Tarasov, V.E.: Concept of dynamic memory in economics. Commun. Nonlinear Sci. Numer. Simul. 55, 127–145 (2018). https://doi.org/10.1016/j.cnsns.2017.06.032

    Article  MathSciNet  Google Scholar 

  7. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993). 1006 pages. ISBN: 9782881248641

    MATH  Google Scholar 

  8. Kiryakova, V.: Generalized Fractional Calculus and Applications. Wiley, New York (1994). 360 p. ISBN 9780582219779

    MATH  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998). 340 pages. ISBN: 0-12-558840-2

    MATH  Google Scholar 

  10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). 540 pages. ISBN: 978-0-444-51832-3

    MATH  Google Scholar 

  11. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, p. 247. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14574-2

    Book  MATH  Google Scholar 

  12. Letnikov, A.V.: On the historical development of the theory of differentiation with arbitrary index. Math. Collect. 3(2), 85–112 (1868). http://mi.mathnet.ru/eng/msb/v3/i2/p85 [in Russian]

  13. Tenreiro Machado, J., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). https://doi.org/10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  MATH  Google Scholar 

  14. Tenreiro Machado, J.A., Galhano, A.M., Trujillo, J.J.: Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 16(2), 479–500 (2013)

    Article  MathSciNet  Google Scholar 

  15. Tenreiro Machado, J.A., Galhano, A.M., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics. 98(1), 577–582 (2014)

    Article  Google Scholar 

  16. Valerio, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014). https://doi.org/10.2478/s13540-014-0185-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Tenreiro Machado, J.A., Kiryakova, V.: The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20(2), 307–336 (2017). https://doi.org/10.1515/fca-2017-0017

    Article  MathSciNet  MATH  Google Scholar 

  18. Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18(11), 2945–2948 (2013). https://doi.org/10.1016/j.cnsns.2013.04.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015). https://doi.org/10.1016/j.jcp.2014.07.019

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 30(1–3), 1–4 (2016). https://doi.org/10.1016/j.cnsns.2015.06.007

    Article  MathSciNet  Google Scholar 

  21. Tarasov, V.E.: Leibniz rule and fractional derivatives of power functions. J. Comput. Nonlinear Dyn. 11(3), 031014 (2016). https://doi.org/10.1115/1.4031364

    Article  Google Scholar 

  22. Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018). https://doi.org/10.1016/j.cnsns.2018.02.019

    Article  MathSciNet  Google Scholar 

  23. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, p. 505. Springer, New York (2010). https://doi.org/10.1007/978-3-642-14003-7

    Book  MATH  Google Scholar 

  24. Tenreiro Machado, J.A.: Handbook of Fractional Calculus with Applications, vol. 1-8. De Gruyter, Berlin, Boston (2019)

    MATH  Google Scholar 

  25. Tarasov, V.E.: On history of mathematical economics: application of fractional calculus. Mathematics 7(6), 509 (2019). https://doi.org/10.3390/math7060509

    Article  Google Scholar 

  26. Tarasov, V.E.: Rules for fractional-dynamic generalizations: difficulties of constructing fractional dynamic models. Mathematics 7(6), 554 (2019). https://doi.org/10.3390/math7060554

    Article  Google Scholar 

  27. Tarasov, V.E.: Generalized memory: fractional calculus approach. Fractal Fract. 2(4), 23 (2018). https://doi.org/10.3390/fractalfract2040023

    Article  Google Scholar 

  28. Trujillo, J.J., Rivero, M., Bonilla, D.: On a Riemann-Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, 255–265 (1999). jmaa.1998.6224

    Article  MathSciNet  Google Scholar 

  29. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications, p. 443. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-43930-2

    Book  MATH  Google Scholar 

  30. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  31. Gorenflo, R., Kilbas, A.A., Rogosin, S.V.: On the generalized Mittag-Leffler type functions. Integral Transf. Spec. Funct. 7(3–4), 215–224 (1998). https://doi.org/10.1080/10652469808819200

    Article  MathSciNet  MATH  Google Scholar 

  32. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transf. Spec. Funct. 15(1), 31–49 (2004). https://doi.org/10.1080/10652460310001600717

    Article  MathSciNet  MATH  Google Scholar 

  33. Tarasov, V.E., Tarasova, S.S.: Fractional derivatives and integrals: What are they needed for? Mathematics 8(2), 164 (2020). https://doi.org/10.3390/math8020164

    Article  Google Scholar 

  34. Kilbas, A.A., Saigo, M., Saxena, R.K.: Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels. J. Integral Equ. Appl. 14(4), 377–396 (2002). https://doi.org/10.1216/jiea/1181074929

    Article  MATH  Google Scholar 

  35. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009). https://doi.org/10.1016/j.amc.2009.01.055

    Article  MathSciNet  MATH  Google Scholar 

  36. Polito, F., Tomovski, Z.: Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. Calc. 6(1), 73–94 (2016). https://doi.org/10.7153/fdc-06-05

    Article  MathSciNet  MATH  Google Scholar 

  37. Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018). https://doi.org/10.1016/j.cnsns.2017.08.018. arXiv:1708.07298v2

    Article  MathSciNet  Google Scholar 

  38. Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi, F.: A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23(1), 9–54 (2020)

    Article  MathSciNet  Google Scholar 

  39. D’Ovidio, M., Polito, F.: Fractional diffusion-telegraph equations and their associated stochastic solutions. Cornell University, pp 23. (2013). arXiv:1307.1696

  40. D’Ovidio, M., Polito, F.: Fractional diffusion-telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 62(4), 692–718 (2017). https://doi.org/10.4213/tvp5150

    Article  MathSciNet  MATH  Google Scholar 

  41. D’Ovidio, M., Polito, F.: Fractional diffusion-telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 62(4), 552–574 (2018). https://doi.org/10.1137/S0040585X97T988812. (ISSN: Electronic: 1095-7219 Print: 0040-585X)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giusti, A.: General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 83, 105114 (2020). https://doi.org/10.1016/j.cnsns.2019.105114

    Article  MathSciNet  Google Scholar 

  43. Tarasov, V.E.: Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag? Comput. Appl. Math. 38, 113 (2019). https://doi.org/10.1007/s40314-019-0883-8

    Article  MathSciNet  MATH  Google Scholar 

  44. Tarasov, V.E., Tarasova, S.S.: Fractional and integer derivatives with continuously distributed lag. Commun. Nonlinear Sci. Numer. Simul. 70, 125–169 (2019). https://doi.org/10.1016/j.cnsns.2018.10.014

    Article  MathSciNet  Google Scholar 

  45. Tarasov, V.E., Tarasova, V.V.: Harrod-Domar growth model with memory and distributed lag. Axioms 8(1), 9 (2019). https://doi.org/10.3390/axioms8010009

    Article  MATH  Google Scholar 

  46. Tarasov, V.E., Tarasova, V.V.: Logistic equation with continuously distributed lag and application in economics. Nonlinear Dyn. 97(2), 1313–1328 (2019). https://doi.org/10.1007/s11071-019-05050-1

    Article  MATH  Google Scholar 

  47. Tarasov, V.E., Tarasova, V.V.: Dynamic Keynesian model of economic growth with memory and lag. Mathematics 7(2), 178 (2019). https://doi.org/10.3390/math7020178

    Article  Google Scholar 

  48. Tarasov, V.E., Tarasova, V.V.: Dynamic Keynesian model of economic growth with memory and lag. In: Mainardi, F., Giusti, A. (eds.) Advanced Mathematical Methods Theory and Applications, pp 116–132. MDPI, Basel, Beijing, Wuhan, Barcelona, Belgrade (2020). https://doi.org/10.3390/books978-3-03928-247-0. 198 pages. ISBN: 978-3-03928-247-0

  49. Granger, C.W.J.: The typical spectral shape of an economic variable. Econometrica. 34(1), 150–161 (1966). https://doi.org/10.2307/1909859

    Article  Google Scholar 

  50. Granger, C.W.J.: Essays in econometrics: collected papers of Clive W. J. Granger. In: by E. Ghysels, N.R. Swanson, M.W. Watson (eds.) Spectral Analysis, Seasonality, Nonlinearity, Methodology, and Forecasting, Vol. I, pp. 523. Cambridge University Press, Cambridge (2001)

  51. Granger, C.W.J., Joyeux, R.: An introduction to long memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–39 (1980). https://doi.org/10.1111/j.1467-9892.1980.tb00297.x

    Article  MathSciNet  MATH  Google Scholar 

  52. Hosking, J.R.M.: Fractional differencing. Biometrika 68(1), 165–176 (1981). https://doi.org/10.1093/biomet/68.1.165

    Article  MathSciNet  MATH  Google Scholar 

  53. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2003. Press release. NobelPrize.org. Nobel Media AB 2019. https://www.nobelprize.org/prizes/economic-sciences/2003/summary/

  54. Beran, J.: Statistics for Long-Memory Processes, p. 315. Chapman and Hall, New York (1994). ISBN 0-412-04901-5

    MATH  Google Scholar 

  55. Palma, W.: Long-Memory Time Series: Theory and Methods, p. 304. Wiley, Hoboken (2007). https://doi.org/10.1002/97804701314. ISBN: 978-0-470-11402-5

  56. Beran, J., Feng, Y., Ghosh, S., Kulik, R.: Long-Memory Processes: Probabilistic Properties and Statistical Methods, p. 884. Springer, Berlin, Heidelberg, New York (2013). https://doi.org/10.1007/978-3-642-35512-7. ISBN: 978-3-642-35511-0

    Book  MATH  Google Scholar 

  57. Teyssiere, G., Kirman, A.P. (eds.): Long Memory in Economics, p. 390. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34625-8

  58. Tarasov, V.E., Tarasova, V.V.: Criterion of existence of power-law memory for economic processes. Entropy 20(4), 414 (2018). https://doi.org/10.3390/e20060414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.E. Fractional nonlinear dynamics of learning with memory. Nonlinear Dyn 100, 1231–1242 (2020). https://doi.org/10.1007/s11071-020-05602-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05602-w

Keywords

Mathematics Subject Classification

Navigation