Skip to main content
Log in

Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, we investigate the asymptotic stability analysis for two classes of nonlinear fractional systems with the regularized Prabhakar derivative. The stability analysis of the neutral and integro-differential nonlinear fractional systems are studied by assessing the eigenvalues of associated matrix and applying conditions on the nonlinear part of these types of systems. We use a numerical method to solve the fractional differential equations with the regularized Prabhakar fractional derivative. We further present the numerical simulations on several test cases to examine and reveal the complex dynamics of the analytical obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal R, Jain S, Agarwal RP (2017) Analytic solution of generalized space time fractional reaction diffusion equation. Fract Differ Calc 7:169–184

    Article  MathSciNet  Google Scholar 

  • Debnath L (2003) Fractional integral and fractional differential equations in fluid mechanics. Fract Calc Appl Anal 6(2):119–155

    MathSciNet  MATH  Google Scholar 

  • Derakhshan MH, Ahmadi Darani M, Ansari A, Khoshsiar Ghaziani R (2016) On asymptotic stability of Prabhakar fractional differential systems. Comput Methods Differ Equations 4(4):276–284

    MathSciNet  MATH  Google Scholar 

  • Derakhshan MH, Ansari A (2019) Numerical approximation to Prabhakar fractional Sturm–Liouville problem. Comput Appl Math 38(71):20

    MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2016) Lyapunov inequality for fractional differential equations with Prabhakar derivative. Math Inequal Appl 19(1):349–358

    MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2017) Finite fractional Sturm-Liouville transforms for generalized fractional derivatives. Iran J Sci Technol 41(4):931–937

    Article  MathSciNet  Google Scholar 

  • Eshaghi S, Khoshsiar Ghaziani R, Ansari A (2019) Stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay. Math Methods Appl Sci 42(7):2302–2323

    Article  MathSciNet  Google Scholar 

  • Eshaghi S, Khoshsiar Ghaziani R, Ansari A (2020) Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function. Math Comput Simul 172:321–340

    Article  MathSciNet  Google Scholar 

  • Esmaeelzade Aghdam Y, Mesgrani H, Javidi M, Nikan O (2020) A computational approach for the space-time fractional advection-diffusion equation arising in contaminant transport through porous media. Eng Comput. https://doi.org/10.1007/s00366-020-01021-y

    Article  Google Scholar 

  • Garra R, Garrappa R (2018) The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun Nonlinear Sci Numer Simul 56:314–329

    Article  MathSciNet  Google Scholar 

  • Garra R, Gorenflo R, Polito F, Tomovski Z (2014) Hilfer-Prabhakar derivatives and some applications. Appl Math Comput 242:576–589

    MathSciNet  MATH  Google Scholar 

  • Garrappa R (2016) Grünwald–Letnikov operators for fractional relaxation in Havriliak-Negami models. Commun Nonlinear Sci Numer Simul 38:178–191

    Article  MathSciNet  Google Scholar 

  • Garrappa R, Mainardi F, Maione G (2016) Models of dielectric relaxation based on completely monotone functions. Fract Calc Appl Anal 19(5):1105–1160

    Article  MathSciNet  Google Scholar 

  • Giusti A, Colombaro I (2018) Prabhakar-like fractional viscoelasticity. Commun Nonlinear Sci Numer Simul 56:138–143

    Article  MathSciNet  Google Scholar 

  • Giusti A, Colombaro I, Garra R, Garrappa R, Polito F, Popolizio M, Mainardi F (2020) A practical guide to Prabhakar fractional calculus. Fract Calc Appl Anal 23:9–54

    Article  MathSciNet  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019) Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int J Appl Comput Math 5(3):50

    Article  MathSciNet  Google Scholar 

  • Gorenflo R, Kilbas AA, Rogosin SV (1998) On the generalized Mittag–Leffler type function. Integr Transforms Spec Funct 7:215–224

    Article  MathSciNet  Google Scholar 

  • Gorenflo R, Mainardi F, Rogosin S (2010) Mittag-Leffler functions: related opics. Springer Monographs in Mathematics, New York

    MATH  Google Scholar 

  • Gupta RK, Shaktawat BS, Kumar D (2016) Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function. J Rajasthan Acad Phys Sci 15(3):117–126

    MathSciNet  MATH  Google Scholar 

  • Hilfer R, Seybold H (2006) Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr Transform Spec Funct 17:637–652

    Article  MathSciNet  Google Scholar 

  • Hu JB, Lu GP, Zhang SB, Zhao LD (2015) Lyapunov stability theorem about fractional system without and with delay. Commun Nonlinear Sci Numer Simul 20:905–913

    Article  MathSciNet  Google Scholar 

  • Jiao Z, Chen Y, Podlubny I (2012) Distributed-order dynamic systems: stability, simulation, applications and perspectives. Springerbriefs in Electrical and Computer Engineering/Springerbriefs in Control, Automation and Robotics, New York

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag–Leffler function and generalized fractional calculus operators. Integr Transforms Spec Funct 15(1):31–49

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204. Elsevier (North-Holland) Science Publishers, Amsterdam

    Google Scholar 

  • Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59:1810–1821

  • Liu S, Jiang W, Li X, Zhou X-F (2016) Lyapunov stability analysis of fractional nonlinear systems. Appl Math Lett 51:13–19

    Article  MathSciNet  Google Scholar 

  • Luo SK, He JM, Xu YL (2015) A new method of dynamical, i.e. stability fractional generalized Hamiltonian method, and its applications. Appl Math Comput 269:77–86

    MathSciNet  MATH  Google Scholar 

  • Luo SK, He JM, Xu YL (2016a) Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int J Non Linear Mech 78:105–111

    Article  Google Scholar 

  • Luo SK, He JM, Xu YL, Zhang XT (2016b) Fractional generalized Hamilton method for equilibrium stability of dynamical systems. Appl Math Lett 60:14–20

    Article  MathSciNet  Google Scholar 

  • Mainardi F (1994) Fractional relaxation and fractional diffusion equations, mathematical aspects. In: Ames WF (ed) Proceedings of the 12th IMACS World Congress, Georgia Tech Atlanta, USA, 11–15 July, vol 1, pp 329–332

  • Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Vienna, New York, pp 291–348

    Chapter  Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  Google Scholar 

  • Mainardi F, Garrappa R (2015) On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J Comput Phys 293:70–80

    Article  MathSciNet  Google Scholar 

  • Metzler R, Schick W, Kilian HG, Nonnenmacher TF (1995) Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 103(16):7180–7186

    Article  Google Scholar 

  • Nikan O, Golbabai A, Tenreiro Machado JA, Nikazad T (2020) Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng Comput. https://doi.org/10.1007/s00366-020-01033-8

    Article  MATH  Google Scholar 

  • Nikan O, Tenreiro Machado JA, Golbabaia A, Nikazad T (2020) Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media. Int Commun Heat Mass Transfer 111:104443

    Article  Google Scholar 

  • Pandey SC (2017) The Lorenzo–Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. Comput Appl Math. https://doi.org/10.1007/s40314-017-0472-7

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Polito F, Tomovski Z (2016) Some properties of Prabhakar-type fractional calculus operators. Fract Differ Calc 6(1):73–94

    Article  MathSciNet  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama J Math 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Priyadharsini S (2016) Stability of fractional neutral and integro-differential systems. J Fract Calculus Appl 7(1):87–102

    MathSciNet  Google Scholar 

  • Qin Z, Wu R, Lu Y (2014) Stability analysis of fractional-order systems with the Riemann–Liouville derivative. Syst Sci Control Eng 2:727–731

    Article  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives, theory and applications. Gordon and Breach, Yverdon et alibi

  • Seybold HJ, Hilfer R (2005) Numerical results for the generalized Mittag–Leffler function. Fracti Calc Appl Anal 8:127–139

    MathSciNet  MATH  Google Scholar 

  • Srivastava HM, Tomovski Z (2009) Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl Math Comput 211:198–210

    MathSciNet  MATH  Google Scholar 

  • Tomovski Z, Hilfer R, Srivastava HM (2010) Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Fract Calc Appl Anal 21:797–814

    MathSciNet  MATH  Google Scholar 

  • Xu J (2017) Time-fractional particle deposition in porous media. J Phys A Math Theor 50(19):195002

    Article  MathSciNet  Google Scholar 

  • Zhang F, Li C, Chen YQ (2011) Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int J Differ Equations 2011:635165. https://doi.org/10.1155/2011/635165

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ansari.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghi, S., Ghaziani, R.K. & Ansari, A. Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems. Comp. Appl. Math. 39, 250 (2020). https://doi.org/10.1007/s40314-020-01296-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01296-3

Keywords

Mathematics Subject Classification

Navigation