Skip to main content
Log in

Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs)

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12 % of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peltz SW, Morsy M, Welch EM, Jacobson A. Ataluren as an agent for therapeutic nonsense suppression. Annu Rev Med. 2013;64:407–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat. 2008;29:1037–47.

    Article  CAS  PubMed  Google Scholar 

  3. Moosajee M, Ramsden SC, Black GC, Seabra MC, Webster AR. Clinical utility gene card for: choroideremia. Eur J Hum Genet. 2014;22. doi:10.1038/ejhg.2013.183.

  4. Overlack N, Goldmann T, Wolfrum U, Nagel-Wolfrum K. Current therapeutic strategies for human Usher syndrome. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers, Inc.; 2011. p. 377–95.

    Google Scholar 

  5. Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet. 2015;52:289–96.

    Article  PubMed  CAS  Google Scholar 

  6. Carroll D. Genome editing by targeted chromosomal mutagenesis. Method Mol Biol. 2015;1239:1–13.

    Article  CAS  Google Scholar 

  7. Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliver Rev. 2015;1239:1–13.

    Google Scholar 

  8. Ain QU, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120–7.

    Article  CAS  Google Scholar 

  9. Solinis MA, Del Pozo-Rodriguez A, Apaolaza PS, Rodriguez-Gascon A. Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. 2015;95(Pt B):331–42. doi:10.1016/j.ejpb.2014.12.022.

  10. Wohlgemuth I, Pohl C, Rodnina MV. Optimization of speed and accuracy of decoding in translation. EMBO J. 2010;29:3701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos T Roy Soc B. 2011;366:2979–86.

    Article  CAS  Google Scholar 

  12. Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genom Hum G. 2014;15:371–94.

    Article  CAS  Google Scholar 

  13. Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, et al. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995;73:1095–103.

    Article  CAS  PubMed  Google Scholar 

  14. Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6:1044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol. 2012;47:444–63.

    Article  CAS  Google Scholar 

  16. Celik A, Kervestin S, Jacobson A. NMD: at the crossroads between translation termination and ribosome recycling. Biochimie. 2015;114:2–9.

    Article  CAS  PubMed  Google Scholar 

  17. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.

    Article  CAS  PubMed  Google Scholar 

  18. Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the I DUA and P53 cDNAs in a mammalian translation system. J Mol Med. 2002;80:367–76.

    Article  CAS  PubMed  Google Scholar 

  19. Floquet C, Hatin I, Rousset JP, Bidou L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 2012;8:e1002608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matalonga L, Arias A, Tort F, Ferrer-Cortes X, Garcia-Villoria J, Coll MJ, et al. Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurotherapeutics. 2015;10:e0135873.

    Google Scholar 

  21. Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol. 2004;55:422–6.

    Article  CAS  PubMed  Google Scholar 

  22. Shalev M, Baasov T. When proteins start to make sense: fine-tuning aminoglycosides for PTC suppression therapy. Med Chem Comm. 2014;5:1092–105.

    Article  CAS  Google Scholar 

  23. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902.

    Article  CAS  PubMed  Google Scholar 

  24. Barbault F, Ren B, Rebehmed J, Teixeira C, Luo Y, Smila-Castro O, et al. Flexible computational docking studies of new aminoglycosides targeting RNA 16S bacterial ribosome site. Eur J Med Chem. 2008;43:1648–56.

    Article  CAS  PubMed  Google Scholar 

  25. Lentini L, Melfi R, Di Leonardo A, Spinello A, Barone G, Pace A, et al. Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol Pharm. 2014;11:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fearon K, McClendon V, Bonetti B, Bedwell DM. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem. 1994;269:17802–8.

    CAS  PubMed  Google Scholar 

  27. Roy B, Leszyk JD, Mangus DA, Jacobson A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA. 2015;112:3038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther. 2007;81:99–103.

    Article  CAS  PubMed  Google Scholar 

  29. Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet. 2008;372:719–27.

    Article  CAS  PubMed  Google Scholar 

  30. Goldmann T, Rebibo-Sabbah A, Overlack N, Nudelman I, Belakhov V, Baasov T, et al. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina. Invest Ophth Vis Sci. 2010;51:6671–80.

    Article  Google Scholar 

  31. Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K. PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Hum Gene Ther. 2011;22:537–47.

    Article  CAS  PubMed  Google Scholar 

  32. Goldmann T, Overlack N, Moller F, Belakhov V, van Wyk M, Baasov T, et al. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO J Mol Med. 2012;4:1186–99.

    Article  CAS  Google Scholar 

  33. Kervestin S, Jacobson A. NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol. 2012;13:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med. 2012;18:679–88.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Gregory-Evans CY. Nonsense suppression therapies in ocular genetic diseases. Cell Mol Life Sci. 2015;72:1931–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lee HL, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Therapeut. 2012;136:227–66.

    Article  CAS  Google Scholar 

  37. Nagel-Wolfrum K, Moller F, Penner I, Wolfrum U. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci. 2014;31:309–16.

    Article  PubMed  Google Scholar 

  38. Schwarz N, Carr AJ, Lane A, Moeller F, Chen LL, Aguila M, et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet. 2015;24:972–86.

    Article  CAS  PubMed  Google Scholar 

  39. Agrelo R, Sutz MA, Setien F, Aldunate F, Esteller M, Da Costa V, et al. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies. Epigenetics. 2015;10:329–41.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem. 2014;5:26–39.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.

    Article  CAS  PubMed  Google Scholar 

  42. Finkel RS, Flanigan KM, Wong B, Bonnemann C, Sampson J, Sweeney HL, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8:e81302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, Baena M, Verdura E, Nascimento A, et al. DMD mutations in 576 dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One. 2015;10:e013518943.

    Article  CAS  Google Scholar 

  44. Dent KM, Dunn DM, von Niederhausern AC, Aoyagi AT, Kerr L, Bromberg MB, et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A. 2005;134:295–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet A. 2000;92:170–7.

    Article  CAS  Google Scholar 

  46. Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Staretz-Chacham O, Lang TC, LaMarca ME, Krasnewich D, Sidransky E. Lysosomal storage disorders in the newborn. Pediatrics. 2009;123:1191–207.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.

    Article  CAS  PubMed  Google Scholar 

  49. Mehta A, Ricci R, Widmer U, Dehout F, Garcia de Lorenzo A, Kampmann C, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest. 2004;34:236–42.

    Article  CAS  PubMed  Google Scholar 

  50. Gal A, Schafer E, Rohard I. The genetic basis of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006.

    Google Scholar 

  51. Zampieri S, Filocamo M, Pianta A, Lualdi S, Gort L, Coll MJ, et al. SMPD1 mutation update: database and comprehensive analysis of published and novel variants. Hum Mutat. 2016;37(2):139–47. doi:10.1002/humu.22923.

    Article  CAS  PubMed  Google Scholar 

  52. Caciotti A, Garman SC, Rivera-Colon Y, Procopio E, Catarzi S, Ferri L, et al. GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochim Biophys Acta. 2011;1812:782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Gen Metab. 2008;94:391–6.

    Article  CAS  Google Scholar 

  54. Hein LK, Bawden M, Muller VJ, Sillence D, Hopwood JJ, Brooks DA. Alpha-l-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol. 2004;338:453–62.

    Article  CAS  PubMed  Google Scholar 

  55. Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, et al. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab. 2012;105:116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fedele AO. Sanfilippo syndrome: causes, consequences, and treatments. Appl Clin Genet. 2015;8:269–81.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Valstar MJ, Neijs S, Bruggenwirth HT, Olmer R, Ruijter GJ, Wevers RA, et al. Mucopolysaccharidosis type IIIA: clinical spectrum and genotype-phenotype correlations. Ann Neurol. 2010;68:876–87.

    Article  PubMed  Google Scholar 

  58. Brooks DA, Muller VJ, Hopwood JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med. 2006;12:367–73.

    Article  CAS  PubMed  Google Scholar 

  59. Bartolomeo R, Polishchuk EV, Volpi N, Polishchuk RS, Auricchio A. Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller JN, Chan CH, Pearce DA. The role of nonsense-mediated decay in neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22:2723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852:2237–41.

    Article  CAS  PubMed  Google Scholar 

  62. Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33:42–63.

    Article  CAS  PubMed  Google Scholar 

  63. Miller JN, Kovacs AD, Pearce DA. The novel Cln 1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet. 2015;24:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. James PD, Raut S, Rivard GE, Poon MC, Warner M, McKenna S, et al. Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood. 2005;106:3043–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lorson CL, Rindt H, Shababi M. Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet. 2010;19:R111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barnard AR, Groppe M, MacLaren RE. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector. Cold Spring Harb Perspect Med. 2014;5(3):a017293. doi:10.1101/cshperspect.a017293.

    Article  PubMed  Google Scholar 

  67. Stone EM. Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144:791–811.

    Article  CAS  PubMed  Google Scholar 

  68. Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res. 2010;29:398–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.

    Article  CAS  Google Scholar 

  70. Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet. 2008;17:3987–4000.

    Article  CAS  PubMed  Google Scholar 

  71. Hardcastle AJ, Thiselton DL, Van Maldergem L, Saha BK, Jay M, Plant C, et al. Mutations in the RP2 gene cause disease in 10 % of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet. 1999;64:1210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Millan JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C. An update on the genetics of Usher syndrome. J Ophthalmol. 2011;2011:417217.

    PubMed  PubMed Central  Google Scholar 

  73. Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wolfrum U. Protein networks related to the Usher syndrome gain insights in the molecular basis of the disease. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers Inc.; 2011. p. 51–73.

    Google Scholar 

  75. Simpson TI, Price DJ. Pax6; a pleiotropic player in development. BioEssays. 2002;24:1041–51.

    Article  CAS  PubMed  Google Scholar 

  76. van Heyningen V, Williamson KA. PAX6 in sensory development. Hum Mol Genet. 2002;11:1161–7.

    Article  PubMed  Google Scholar 

  77. Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014;124:111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 1985;13:6265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104:375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wagner KR, Hamed S, Hadley DW, Gropman AL, Burstein AH, Escolar DM, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol. 2001;49:706–11.

    Article  CAS  PubMed  Google Scholar 

  81. Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003;22:15–21.

    CAS  PubMed  Google Scholar 

  82. Malik V, Rodino-Klapac LR, Viollet L, Wall C, King W, Al Dahhak R, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67:771–80.

    CAS  PubMed  Google Scholar 

  83. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2:467–9.

    Article  CAS  PubMed  Google Scholar 

  84. Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med. 1997;3:1280–4.

    Article  CAS  PubMed  Google Scholar 

  85. Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med. 2002;80:595–604.

    Article  CAS  PubMed  Google Scholar 

  86. Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med. 2000;161:860–5.

    Article  CAS  PubMed  Google Scholar 

  87. Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349:1433–41.

    Article  CAS  PubMed  Google Scholar 

  88. Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;163:1683–92.

    Article  CAS  PubMed  Google Scholar 

  89. Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 2007;5:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Guerin K, Gregory-Evans CY, Hodges MD, Moosajee M, Mackay DS, Gregory-Evans K, et al. Systemic aminoglycoside treatment in rodent models of retinitis pigmentosa. Exp Eye Res. 2008;87:197–207.

    Article  CAS  PubMed  Google Scholar 

  91. Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 2008;24:552–63.

    Article  CAS  PubMed  Google Scholar 

  92. Popescu AC, Sidorova E, Zhang G, Eubanks JH. Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro. J Neurosci Res. 2010;88:2316–24.

    CAS  PubMed  Google Scholar 

  93. Perez B, Rodriguez-Pombo P, Ugarte M, Desviat LR. Readthrough strategies for therapeutic suppression of nonsense mutations in inherited metabolic disease. Mol Syndromol. 2012;3:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem. 2012;45:1132–44.

    Article  CAS  PubMed  Google Scholar 

  95. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.

    Article  CAS  PubMed  Google Scholar 

  96. Xie J, Talaska AE, Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res. 2011;281:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Bottger EC. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA. 2008;105:20888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, et al. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci USA. 2012;109:10984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shulman E, Belakhov V, Wei G, Kendall A, Meyron-Holtz EG, Ben-Shachar D, et al. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases. J Biol Chem. 2014;289:2318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Francis SP, Katz J, Fanning KD, Harris KA, Nicholas BD, Lacy M, et al. A novel role of cytosolic protein synthesis inhibition in aminoglycoside ototoxicity. J Neurosci. 2013;33:3079–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet. 2006;120:589–601.

    Article  CAS  PubMed  Google Scholar 

  102. Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet. 2009;18:3906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. 2005;14:845–57.

    Article  CAS  PubMed  Google Scholar 

  104. Heier CR, DiDonato CJ. Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet. 2009;18:1310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, Hainrichson M, Stahl I, Ben Yosef T, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett. 2006;16:6310–5.

    Article  CAS  PubMed  Google Scholar 

  106. Brendel C, Belakhov V, Werner H, Wegener E, Gartner J, Nudelman I, et al. Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med. 2011;89:389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, et al. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem. 2009;52:2836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vecsler M, Ben Zeev B, Nudelman I, Anikster Y, Simon AJ, Amariglio N, et al. Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS One. 2011;6:e20733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee HL, Chen CC, Baasov T, Ron Y, Dougherty JP. Post-transcriptionally regulated expression system in human xenogeneic transplantation models. Mol Ther. 2011;19:1645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rowe SM, Sloane P, Tang LP, Backer K, Mazur M, Buckley-Lanier J, et al. Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med. 2011;89:1149–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T. Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem. 2010;18:3735–46.

    Article  CAS  PubMed  Google Scholar 

  112. Kandasamy J, Atia-Glikin D, Shulman E, Shapira K, Shavit M, Belakhov V, et al. Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic diseases caused by nonsense mutations. J Med Chem. 2012;55:10630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rebibo-Sabbah A, Nudelman I, Ahmed ZM, Baasov T, Ben-Yosef T. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome. Hum Genet. 2007;122:373–81.

    Article  CAS  PubMed  Google Scholar 

  114. Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, et al. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One. 2013;8:e60478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, et al. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol Genet Metab. 2014;111:374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, et al. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Resp Cell Mol. 2014;50:805–16.

    Article  CAS  Google Scholar 

  117. Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med. 2009;206:2285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gatti RA. SMRT compounds correct nonsense mutations in primary immunodeficiency and other genetic models. Ann N Y Acad Sci. 2012;1250:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kayali R, Ku JM, Khitrov G, Jung ME, Prikhodko O, Bertoni C. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet. 2012;21:4007–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku JM, et al. A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther. 2013;21:1653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hirawat S, Welch EM, Elfring GL, Northcutt VJ, Paushkin S, Hwang S, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol. 2007;47:430–44.

    Article  CAS  PubMed  Google Scholar 

  122. Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–87.

    Article  CAS  PubMed  Google Scholar 

  123. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2:539–47.

    Article  CAS  PubMed  Google Scholar 

  124. Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA. 2008;105:2064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wilschanski M. Small molecules to treat cystic fibrosis. Proc Am Thorac Soc. 2010;7:399–403.

    Article  CAS  PubMed  Google Scholar 

  126. Rowe SM, Clancy JP. Advances in cystic fibrosis therapies. Curr Opin Pediatr. 2006;18:604–13.

    Article  PubMed  Google Scholar 

  127. Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182:1262–72.

    Article  CAS  PubMed  Google Scholar 

  128. Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25:1158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sarkar C, Zhang Z, Mukherjee AB. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab. 2011;104:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Thada V, Miller JN, Kovacs AD, Pearce DA. Tissue-specific variation in nonsense mutant transcript level and drug-induced read-through efficiency in the Cln1 mouse model of INCL. J Cell Mol Med. 2015. doi:10.1111/jcmm.12744.

    PubMed  PubMed Central  Google Scholar 

  131. Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta. 2013;1829:612–23.

    Article  CAS  PubMed  Google Scholar 

  132. Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, et al. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med. 2014;6:685–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Usuki F, Yamashita A, Higuchi I, Ohnishi T, Shiraishi T, Osame M, et al. Inhibition of nonsense-mediated mRNA decay rescues the phenotype in Ullrich’s disease. Ann Neurol. 2004;55:740–4.

    Article  CAS  PubMed  Google Scholar 

  134. Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest. 2007;117:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74.

    Article  CAS  PubMed  Google Scholar 

  136. Wang D, Zavadil J, Martin L, Parisi F, Friedman E, Levy D, et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol. 2011;31:3670–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36:801–8.

    Article  CAS  PubMed  Google Scholar 

  139. Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17:401–26.

    PubMed  Google Scholar 

  140. Yukihara M, Ito K, Tanoue O, Goto K, Matsushita T, Matsumoto Y, et al. Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol Pharm Bull. 2011;34:712–6.

    Article  CAS  PubMed  Google Scholar 

  141. Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2015;111:124–33.

    Article  PubMed  Google Scholar 

  142. Du M, Keeling KM, Fan L, Liu X, Kovacs T, Sorscher E, et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med. 2006;84:573–82.

    Article  CAS  PubMed  Google Scholar 

  143. Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 2014;23:2005–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Karp GM, Hwang S, Chen G, Almstead NG. 1,2,4-Oxadiazole benzoic acid compounds and their use for nonsense suppression and the treatment of disease. US Patent 7772259 B2, 10 Aug 2010.

  145. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_‐_Public_assessment_report/human/002720/WC500171816.pdf. Accessed 19 Jan 2016.

  146. PTC Therapeutics. Extension study of ataluren (PTC124) in cystic fibrosis [ClinicalTrials.gov identifier NCT01140451]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015.

  147. PTC Therapeutics. Safety and efficacy study of PTC124 in Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT00264888]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015.

  148. PTC Therapeutics. Phase 3 study of ataluren in patients with nonsense mutation Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT01826487]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015.

  149. PTC Therapeutics. Study of ataluren (PTC124®) in hemophilia A and B [ClinicalTrials.gov identifier NCT00947193]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015.

Download references

Acknowledgments

The authors thank Helen May-Simera for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Nagel-Wolfrum.

Ethics declarations

Funding

This work was supported by the BMBF under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases, the Deutsche Forschungsgemeinschaft (GRK 1044), European Community FP7/2009/241955 (SYSCILIA), FAUN-Stiftung, Nuremberg, Foundation Fighting Blindness (FFB, TA-NMT-0611-0538-JGU), and by Tistou and Charlotte Kerstan Stiftung.

Conflicts of interest

K. Nagel-Wolfrum, F. Möller, I. Penner, and U. Wolfrum have no conflicts of interest that are directly relevant to the content of this study. T. Baasov holds patents related to the NB compounds (WO/07/113,841; WO2012/066546) and any related intellectual property was licensed by Technion to a third party. Other than this, he has no other relevant affiliations, financial involvement, or financial conflicts related to the subject or materials discussed in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagel-Wolfrum, K., Möller, F., Penner, I. et al. Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 30, 49–74 (2016). https://doi.org/10.1007/s40259-016-0157-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-016-0157-6

Keywords

Navigation