Skip to main content
Log in

Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the disease cystic fibrosis. We previously reported that gentamicin administration suppressed a CFTR premature stop mutation in a Cftr−/− mouse model carrying a human CFTR-G542X (hCFTR-G542X) transgene, resulting in the appearance of hCFTR protein and function. However, the high doses used in that study resulted in peak serum levels well beyond the levels typically administered to humans. To address this problem, we identified doses of both gentamicin and amikacin that resulted in peak serum levels within their accepted clinical ranges. We then asked whether these doses could suppress the hCFTR-G542X mutation in the Cftr−/− hCFTR-G542X mouse model. Our results indicate that low doses of each compound restored some hCFTR protein expression and function, as shown by immunofluorescence and short-circuit current measurements. However, we found that amikacin suppressed the hCFTR-G542X premature stop mutation more effectively than gentamicin when administered at these clinically relevant doses. Because amikacin is also less toxic than gentamicin, it may represent a superior choice for suppression therapy in patients that carry a premature stop mutation in the CFTR gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, Thomas N, Cooper DN (2000) Human gene mutation database—a biomedical information and research resource. Hum Mutat 15:45–51

    Article  PubMed  CAS  Google Scholar 

  2. Fearon K, McClendon V, Bonetti B, Bedwell DM (1994) Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269:17802–17808

    PubMed  CAS  Google Scholar 

  3. Bonetti B, Fu L, Moon J, Bedwell DM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345

    Article  PubMed  CAS  Google Scholar 

  4. Manuvakhova M, Keeling K, Bedwell DM (2000) Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–1055

    Article  PubMed  CAS  Google Scholar 

  5. Keeling KM, Bedwell DM (2002) Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 80:367–376

    Article  PubMed  CAS  Google Scholar 

  6. Zsembery A, Jessner W, Sitter G, Spirli C, Strazzabosco M, Graf J (2002) Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Hepatology 35:95–104

    Article  PubMed  CAS  Google Scholar 

  7. Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF (2000) Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 48:164–169

    Article  PubMed  CAS  Google Scholar 

  8. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    Article  PubMed  CAS  Google Scholar 

  9. Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3:1280–1284

    Article  PubMed  CAS  Google Scholar 

  10. Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL (1999) Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 104:375–381

    Article  PubMed  CAS  Google Scholar 

  11. Sleat DE, Sohar I, Gin RM, Lobel P (2001) Aminoglycoside-mediated suppression of nonsense mutations in late infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol 5(Suppl A):57–62

    Article  PubMed  Google Scholar 

  12. Keeling KM, Brooks DA, Hopwood JJ, Li P, Thompson JN, Bedwell DM (2001) Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-l-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Genet 10:291–299

    Article  PubMed  CAS  Google Scholar 

  13. Hein LK, Bawden M, Muller VJ, Sillence D, Hopwood JJ, Brooks DA (2004) Alpha-l-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol 338:453–462

    Article  PubMed  CAS  Google Scholar 

  14. Sossi V, Giuli A, Vitali T, Tiziano F, Mirabella M, Antonelli A, Neri G, Brahe C (2001) Premature termination mutations in exon 3 of the SMN1 gene are associated with exon skipping and a relatively mild SMA phenotype. Eur J Hum Genet 9:113–120

    Article  PubMed  CAS  Google Scholar 

  15. Schulz A, Sangkuhl K, Lennert T, Wigger M, Price DA, Nuuja A, Gruters A, Schultz G, Schoneberg T (2002) Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 87:5247–5257

    Article  PubMed  CAS  Google Scholar 

  16. Helip-Wooley A, Park MA, Lemons RM, Thoene JG (2002) Expression of CTNS alleles: subcellular localization and aminoglycoside correction in vitro. Mol Genet Metab 75:128–133

    Article  PubMed  CAS  Google Scholar 

  17. Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL (2005) A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14:1199–1210

    Article  PubMed  CAS  Google Scholar 

  18. Lai CH, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci USA 101:15676–15681

    Article  PubMed  CAS  Google Scholar 

  19. Aguiari G, Banzi M, Gessi S, Cai Y, Zeggio E, Manzati E, Piva R, Lambertini E, Ferrari L, Peters DJ, Lanza F, Harris PC, Borea PA, Somlo S, Del Senno L (2004) Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J 18:884–886

    PubMed  CAS  Google Scholar 

  20. Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, Bebok Z, Whitsett JA, Dey CR, Colledge WH, Evans MJ, Sorscher EJ, Bedwell DM (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med 80:595–604

    Article  PubMed  CAS  Google Scholar 

  21. Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, Comi LI (2003) Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 22:15–21

    PubMed  CAS  Google Scholar 

  22. Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L, Kerem B, Kerem E (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441

    Article  PubMed  CAS  Google Scholar 

  23. Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, Kerem B, Kerem E (2000) A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 161:860–865

    PubMed  CAS  Google Scholar 

  24. Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, Greer H, Hong J, Wing L, Macaluso M, Lyrene R, Sorscher EJ, Bedwell DM (2001) Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 163:1683–1692

    PubMed  CAS  Google Scholar 

  25. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257:1083–1088

    Article  PubMed  CAS  Google Scholar 

  26. Koerner TJ, Hill JE, Myers AM, Tzagoloff A (1991) High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods Enzymol 194:477–490

    Article  PubMed  CAS  Google Scholar 

  27. Dawson DC (1977) Na and Cl transport across the isolated turtle colon: parallel pathways for transmural ion movement. J Membr Biol 37:213–233

    Article  PubMed  CAS  Google Scholar 

  28. Arky R (1996) Physicians’ desk reference. Medical economics, Montvale, NJ

    Google Scholar 

  29. Beauchamp D, Labrecque G (2001) Aminoglycoside nephrotoxicity: do time and frequency of administration matter? Curr Opin Crit Care 7:401–408

    Article  PubMed  CAS  Google Scholar 

  30. Nagai J, Takano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet 19:159–170

    Article  PubMed  CAS  Google Scholar 

  31. Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    PubMed  CAS  Google Scholar 

  32. Laurent G, Carlier MB, Rollman B, Van Hoof F, Tulkens P (1982) Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem Pharmacol 31:3861–3870

    Article  PubMed  CAS  Google Scholar 

  33. De Broe ME, Paulus GJ, Verpooten GA, Roels F, Buyssens N, Wedeen R, Van Hoof F, Tulkens PM (1984) Early effects of gentamicin, tobramycin, and amikacin on the human kidney. Kidney Int 25:643–652

    Article  PubMed  Google Scholar 

  34. Carlier MB, Laurent G, Claes PJ, Vanderhaeghe HJ, Tulkens PM (1983) Inhibition of lysosomal phospholipases by aminoglycoside antibiotics: in vitro comparative studies. Antimicrob Agents Chemother 23:440–449

    PubMed  CAS  Google Scholar 

  35. Lynch SR, Puglisi JD (2001) Structure of a eukaryotic decoding region A-site RNA. J Mol Biol 306:1023–1035

    Article  PubMed  CAS  Google Scholar 

  36. Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. EMBO J 17:6437–6448

    Article  PubMed  CAS  Google Scholar 

  37. Kohlhepp SJ, Loveless MO, Kohnen PW, Houghton DC, Bennett WM, Gilbert DN (1984) Nephrotoxicity of the constituents of the gentamicin complex. J Infect Dis 149:605–614

    PubMed  CAS  Google Scholar 

  38. Kobayashi M, Umemura M, Sone M, Nakashima T (2003) Differing effects on the inner ear of three gentamicin compounds: GM-C1, -C2 and -C1a. Acta Otolaryngol 123:916–922

    PubMed  CAS  Google Scholar 

  39. Isoherranen N, Lavy E, Soback S (2000) Pharmacokinetics of gentamicin C(1), C(1a), and C(2) in beagles after a single intravenous dose. Antimicrob Agents Chemother 44:1443–1447

    Article  PubMed  CAS  Google Scholar 

  40. Bartal C, Danon A, Schlaeffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114:194–198

    Article  PubMed  CAS  Google Scholar 

  41. Mazzon E, Britti D, De Sarro A, Caputi AP, Cuzzocrea S (2001) Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats. Eur J Pharmacol 424:75–83

    Article  PubMed  CAS  Google Scholar 

  42. Kawamoto K, Sha SH, Minoda R, Izumikawa M, Kuriyama H, Schacht J, Raphael Y (2004) Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 9:173–181

    Article  PubMed  CAS  Google Scholar 

  43. Nakashima T, Teranishi M, Hibi T, Kobayashi M, Umemura M (2000) Vestibular and cochlear toxicity of aminoglycosides–a review. Acta Otolaryngol 120:904–911

    Article  PubMed  CAS  Google Scholar 

  44. Sener G, Sehirli AO, Altunbas HZ, Ersoy Y, Paskaloglu K, Arbak S, Ayanoglu-Dulger G (2002) Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res 32:231–236

    Article  PubMed  CAS  Google Scholar 

  45. Beauchamp D, Laurent G, Maldague P, Abid S, Kishore BK, Tulkens PM (1990) Protection against gentamicin-induced early renal alterations (phospholipidosis and increased DNA synthesis) by coadministration of poly-l-aspartic acid. J Pharmacol Exp Ther 255:858–866

    PubMed  CAS  Google Scholar 

  46. Gilbert DN, Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Finkbeiner HC, Lindsley J, Bennett WM (1989) Polyaspartic acid prevents experimental aminoglycoside nephrotoxicity. J Infect Dis 159:945–953

    PubMed  CAS  Google Scholar 

  47. Thibault N, Grenier L, Simard M, Bergeron MG, Beauchamp D (1994) Attenuation by daptomycin of gentamicin-induced experimental nephrotoxicity. Antimicrob Agents Chemother 38:1027–1035

    PubMed  CAS  Google Scholar 

  48. Thibault N, Grenier L, Simard M, Bergeron MG, Beauchamp D (1995) Protection against gentamicin nephrotoxicity by daptomycin in nephrectomized rats. Life Sci 56:1877–1887

    Article  PubMed  CAS  Google Scholar 

  49. Ramalho AS, Beck S, Meyer M, Penque D, Cutting GR, Amaral MD (2002) Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol 27:619–627

    PubMed  CAS  Google Scholar 

  50. Kerem E (2004) Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 10:547–552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Lee Sweeney and Erik Schwiebert for helpful discussions. This work was supported by NIH grant P50 DK 53090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Bedwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, M., Keeling, K.M., Fan, L. et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med 84, 573–582 (2006). https://doi.org/10.1007/s00109-006-0045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0045-5

Keywords

Navigation