Skip to main content
Log in

Enhanced salt tolerance of transgenic vegetable soybeans resulting from overexpression of a novel Δ1-pyrroline-5-carboxylate synthetase gene from Solanum torvum Swartz

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Vegetable soybeans [Glycine max (L.) Merrill] are susceptible to salt stress and, thus, soil salinity can severely affect their growth and productivity. To enhance the salt tolerance of vegetable soybeans, a novel Solanum torvum Swartz Δ1-pyrroline-5-carboxylate synthetase gene (StP5CS, GenBank accession number: JN606861) that encodes a critical regulatory enzyme in proline biosynthesis was transformed into the cultivar NY-1001 using an Agrobacterium-mediated transformation method. PCR and Southern blot analyses indicated that two independent T0 fertile transgenic plants were generated. The transgenic plants transmitted the transgenes into their T1 progeny in a 3:1 ratio. The T2 and T3 homozygous transgenic lines (HTLs) were examined for salt tolerance in pot and hydroponic cultures, respectively. The StP5CS overexpression conferred salt tolerance in T2 and T3 HTLs. Under NaCl stress conditions, the leaf scorch scores of T2 and T3 HTLs were significantly lower than those of wild-type (WT) plants. The plant height, leaf area, relative chlorophyll content, and number of fresh pods of T2 and T3 HTLs were significantly higher than those of WT plants. Compared with WT plants, T2 and T3 HTLs had significantly higher levels of proline and significantly lower levels of membrane lipid peroxidation. These results indicate that StP5CS overexpression in HTLs results in enhanced salt tolerance associated with higher levels of proline accumulation under salinity stress and that StP5CS can be utilized to improve salinity tolerance in vegetable crop genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ashraf, M. and N.A. Akram. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 27:744–752.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207.

    Article  CAS  Google Scholar 

  • Cao, W.H., J. Liu, X.J. He, R.L. Mu, H.L. Zhou, S.Y. Chen, and J.S. Zhang. 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143:707–719.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Çelik, Ö. and S.G. Ünsal. 2013. Expression analysis of proline metabolism-related genes in salt-tolerant soybean mutant plants. Plant Omics 6:364–370.

    Google Scholar 

  • Chakraborty, K., R.K. Sairam, and R.C. Bhattacharya. 2012. Salinity-induced expression of pyrrolline-5-carboxylate synthetase determine salinity tolerance in Brassica spp. Acta Physiol. Plant. 34:1935–1941.

    Article  CAS  Google Scholar 

  • Chen, G.H., W. Yan, L.F. Yang, J.Y. Gai, and Y.L. Zhu. 2014. Overexpression of StNHX1, a novel vacuolar Na+/H+ antiporter gene from Solanum torvum, enhances salt tolerance in transgenic vegetable soybean. Hort. Environ. Biotechnol. 55:213–221.

    Article  CAS  Google Scholar 

  • Chen, P., K. Yan, H. Shao, and S. Zhao. 2013a. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PloS One 8:e83227.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, J.B., J.W. Yang, Z.Y. Zhang, X.F. Feng, and S.M. Wang. 2013b. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J. Genet. 92:461–469.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H.J., T. Chandrasekhar, H.Y. Lee, and K.M. Kim. 2007. Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tiss. Organ Cult. 91:235–242.

    Article  CAS  Google Scholar 

  • De Carvalho, K., M.K.F. De Campos, D.S. Domingues, L.F.P. Pereira, and L.G.E. Vieira. 2013. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep. 40:3269–3279.

    Article  CAS  PubMed  Google Scholar 

  • Hou, J., C. Wang, X. Hong, J. Zhao, C. Xue, N. Guo, J. Gai, and H. Xing. 2011. Association analysis of vegetable soybean quality traits with SSR markers. Plant Breed. 130:444–449.

    Article  CAS  Google Scholar 

  • Jackson, M.A., D.J. Anderson, and R.G. Birch. 2013. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res. 22:143–151.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R.A., T.A. Kavanagh, and M.W. Bevan. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jyothishwaran, G., D. Kotresha, T. Selvaraj, S. Srideshikan, P. Rajvanshi, and C. Jayabaskaran. 2007. A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Curr. Sci. 93:770–772.

    CAS  Google Scholar 

  • Karthikeyan, A., S.K. Pandian, and M. Ramesh. 2011. Transgenic indica rice cv. ADT 43 expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tiss. Organ Cult. 107:383–395.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P.B., Z. Hong, G.H. Miao, C.-A.A. Hu, and D.P.S. Verma. 1995. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 8:1387–1394.

    Google Scholar 

  • Kim, G.B. and Y.W. Nam. 2013. A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J. Plant Physiol. 170:291–302.

    Article  CAS  PubMed  Google Scholar 

  • Le, D.T., D.L. Aldrich, B. Valliyodan, Y. Watanabe, C. Van Ha, R. Nishiyama, S.K. Guttikonda, T.N. Quach, J.J. Gutierrez-Gonzalez, T. Lam-Son Phan, and H.T. Nguyen. 2012. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PloS One 7:e46487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, J.D., S.L. Smothers, D. Dunn, M. Villagarcia, C.R. Shumway, T.E. Carter, Jr., and J.G. Shannon. 2008. Evaluation of a simple method to screen soybean genotypes for salt tolerance. Crop Sci. 48:2194–2200.

    Article  Google Scholar 

  • Liu, S.C., G.H. Chen, L.F. Yang, J.Y. Gai, and Y.L. Zhu. 2013. Production of transgenic soybean to eliminate the major allergen Gly m Bd 30K by RNA interference-mediated gene silencing. J. Pure Appl. Microbiol. 7(Suppl.):589–599.

    CAS  Google Scholar 

  • Liu, S.C., G.C. Zhang, L.F. Yang, M. Mii, J.Y. Gai, and Y.L. Zhu. 2014. Bialaphos-resistant transgenic soybeans produced by the Agrobacterium-mediated cotyledonary-node method. J. Agric. Sci. Technol. 16:175–190.

    CAS  Google Scholar 

  • Mariashibu, T.S., K. Subramanyam, M. Arun, S. Mayavan, M. Rajesh, J. Theboral, M. Manickavasagam, and A. Ganapathi. 2013. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiol. Plant. 35:41–54.

    Article  CAS  Google Scholar 

  • Mattioli, R., P. Costantino, and M. Trovato. 2009. Proline accumulation in plants: Not only stress. Plant Signal. Behav. 4:1016–1018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 9:4321–4325.

    Article  Google Scholar 

  • Phang, T.H., G.H. Shao, and H.M. Lam. 2008. Salt tolerance in soybean. J. Integr. Plant Biol. 50:1196–1212.

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 37:613–620.

    Article  Google Scholar 

  • Richardson, K.A., D.A. Maher, C.S. Jones, and G. Bryan. 2013. Genetic transformation of western clover (Trifolium occidentale DE Coombe.) as a model for functional genomics and transgene introgression in clonal pasture legume species. Plant Methods 9:25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rivero, R.M., T.C. Mestre, R. Mittler, F. Rubio, F. Garcia-Sanchez, and V. Martinez. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 37:1059–1073.

    Article  CAS  PubMed  Google Scholar 

  • Rodal, A.A., A.L. Manning, B.L. Goode, and D.G. Drubin. 2003. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol. 13:1000–1008.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano, J.M., R. Porcel, C. Azcon, and R. Aroca. 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot. 63:4033–4044.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen, T.D. and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2002. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21:81–85.

    Article  PubMed  Google Scholar 

  • Song, J., C. Liu, D. Li, and Z. Gu. 2013. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max L. Merr.). Ind. Crop. Prod. 50:743–749.

    Article  CAS  Google Scholar 

  • Surekha, C., K. Nirmala Kumari, L. Aruna, G. Suneetha, A. Arundhati, and P.B. Kavi Kishor. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss. Organ Cult. 116:27–36.

    Article  CAS  Google Scholar 

  • Székely, G., E. Ábrahám, Á. Cséplő, G. Rigó, L. Zsigmond, J. Csiszár, F. Ayaydin, N. Strizhov, J. Jásik, and E. Schmelzer. 2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53:11–28.

    Article  PubMed  Google Scholar 

  • Szabados, L. and A. Savouré. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo, E.C.G., I. Schuster, M. Pileggi, C.A. Scapim, H.B.C. Molinari, C.J. Marur, and L.G.E. Vieira. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164:1367–1376.

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: A review. Amino Acids 35:753–759.

    Article  CAS  PubMed  Google Scholar 

  • Wei, G.P., L.F. Yang, Y.L. Zhu, and G. Chen. 2009. Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci. Hort. 120:443–451.

    Article  CAS  Google Scholar 

  • Zhang, G.W., S.C. Xu, W.H. Mao, Q.Z. Hu, and Y.M. Gong. 2013a. Determination of the genetic diversity of vegetable soybean Glycine max (L.) Merr. using EST-SSR markers. J. Zhejiang Univ.-SCI. B 14:279–288.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, X.X., Y.J. Tang, Q.B. Ma, C.Y. Yang, Y.H. Mu, H.C. Suo, L.H. Luo, and H. Nian. 2013b. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PloS One 8:e83011.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Lin Zhu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GC., Zhu, WL., Gai, JY. et al. Enhanced salt tolerance of transgenic vegetable soybeans resulting from overexpression of a novel Δ1-pyrroline-5-carboxylate synthetase gene from Solanum torvum Swartz. Hortic. Environ. Biotechnol. 56, 94–104 (2015). https://doi.org/10.1007/s13580-015-0084-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0084-3

Additional key words

Navigation