Skip to main content
Log in

Retrotransposon-based molecular markers for grapevine species and cultivars identification

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

CV:

Coefficient of variation

He:

Expected heterozygosity

Ho:

Observed heterozygosity

IRAP:

Inter-retrotransposon amplified polymorphism

ISSR:

Inter-SSR

LTRs:

Long terminal repeats

MI:

Marker index

PI:

Probability of identity

PIC:

Polymorphic information content

PICav :

Polymorphic information content arithmetic mean

RBIP:

Retrotransposon-based insertional polymorphism

REMAP:

Retrotransposon-microsatellite amplified polymorphism

RTs:

Retrotransposons

SI:

Shannon’s index

SSAP:

Sequence-specific amplified polymorphism

SSRs:

Single sequence repeats

TEs:

Transposable elements

References

  • Anderson J-A, Churchill G-A, Autrique J-E, Sorells M-E, Tanksley S-D (1993) Optimizing parental selection for genetic-linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-García R, Ruiz Garcia L, Bolling L, Ocete R, Lopez M-A, Arnold D, Ergul A, Soylemezoglu G, Uzun H-I, Cabello F, Ibanez J, Aradhya M-K, Atanassov A et al (2006) Multiple origin of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphism. Mol Ecol 15:3707–3714

    Article  PubMed  Google Scholar 

  • Aradhya M-K, Dangl G-S, Prins B-H, Boursiquot J-M, Walker M-A, Meredith C-P, Simon C-J (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman A-H (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C E Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    CAS  PubMed  Google Scholar 

  • Boeke J-D, Corces V-G (1989) Transcriptions and reverse transcriptions of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White R-L, Skolnick M, Davis R-W (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Bowers J-E, Dangl G-S, Vignani R, Meredith C-P (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  CAS  PubMed  Google Scholar 

  • Bowers J-E, Meredith C-P (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16:84–87

    Article  CAS  PubMed  Google Scholar 

  • Bretó M-P, Ruiz C, Pina J-A, Asíns M-J (2001) The diversification of Citrus clementina Hort ex Tan, a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    Article  PubMed  Google Scholar 

  • Calò A, Costacurta A, Paudetti G, Giust M, Grasselli A, Egger E, Crespan M (1995) Characterization of biotypes of Sangiovense as a basis for clonal selection. Proceedings of the International Symposium on Clonal Selection: June 20 and 21, Oregon Convention Centre, Portland, Oregon, USA pages 99–104

  • Cervera M-T, Cabezas J-A, Sancha J-C, Martinez de Toda F, Martinez-Zapater J-P (1998) Application of AFLPs to the characterisation of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor Appl Genet 97:51–59

    Article  CAS  Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards K-J, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101:301–308

    Article  Google Scholar 

  • Di Vecchi SM, Bandinelli R, Boselli M, This P, Boursiquot J-M, Laucou V, Lacombe T (2007) Genetic structuring and parentage analysis for evolutionary studies in grapevine: kin group and origin of the cultivar Sangiovese revealed. J Amer Soc Hort Sci 132:514–524

    Google Scholar 

  • Doolittle R-F, Feng D-F, Johnson M-S, Mc Clure M-A (1989) Origins and evolutionary relationship of retroviruses. Q Rev Biol 64:1–30

    Article  CAS  PubMed  Google Scholar 

  • Fanizza G, Chaabane R, Lamaj F, Ricciardi L (2003) AFLP analysis of genetic relationships among aromatic grapevines (Vitis vinifera). Theor Appl Genet 107:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Flavell A-J, Knox M-R, Pearce S-R, Ellis T-H-N (1998) Retrotransposon-based insertional polymorphism (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Fregoni M (1991) Origini della vite e della viticoltura. Contributo dei popoli antichi. Musumeci (ed) pp 160

  • Herrera R, Cares V, Wilkinson M-J, Caligari P-D-S (2002) Characterisation of genetic variation between Vitis vinifera cultivars from central Chile using RAPD and inter simple sequence repeat markers. Euphytica 124:139–145

    Article  CAS  Google Scholar 

  • Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè M, Valle G, Morgante M, Caboche M, Adam-Blondon A, Weissenbach J, Quétier F, Wincker P (2007) The French–Italian public consortium for grapevine genome characterization the grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36. doi:10.1186/1471-2148-6-36

    Article  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Prot 1:2478–2484

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kumar A, Bennetzen J-L (1999) Plant retrotransposons. Annu Rev Genet 34:479–532

    Article  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:87–134

    Article  Google Scholar 

  • Labra M, Imazio F, Grassi F, Rossoni M, Sala F (2004) Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding 123:180–185

    Article  CAS  Google Scholar 

  • Lewis P-O, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html

  • Manninen O, Kalendar R, Robinson J, Schulman A-H (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mulcahy D, Cresti M, Sansavini S, Douglas C, Linskens H-F, Bergamini-Mulcahy G, Vignani R, Pancaldi M (1993) The use of random amplified polymorphic DNAs to fingerprint apple genotypes. Sci Hortic 54:89–96

    Article  CAS  Google Scholar 

  • Natali L, Giordani T, Buti M, Cavallini A (2007) Isolation of Ty1-copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breed 19:255–265

    Article  CAS  Google Scholar 

  • Negrul AM (1946) Origin and classification of cultivated grape. In: Baranov A, Kai YF, Lazarevski MA, Negrul AM, Palibin TV, Prosmoserdov NN (eds) The Ampelografy of the URSS, vol 1. Pischepromisdat, Moscow, pp 159–216

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Pelsy F, Merdinoglu D (2002) Complete sequence of Tvv1, a family of Ty1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking. Theor Appl Genet 105:614–621

    Article  CAS  PubMed  Google Scholar 

  • Pelsy F (2007) Untranslated leader region polymorphism of Tvv1, a retrotransposon family, is a novel marker useful for analyzing genetic diversity and relatedness in the genus Vitis. Theor Appl Genet 116:15–27

    Article  CAS  PubMed  Google Scholar 

  • Pelsy F, Schehrer L, Merdinoglu D (2003) Development of grapevine retrotransposon-based molecular marker (S-SAP). Acta Hortic 603:83–87

    CAS  Google Scholar 

  • Pereira H-S, Barao A, Delgado M, Morais-Cecìlio L, Viegas W (2005) Genomic analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera. Theor Appl Genet 111:871–878

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S-V, Rafalski J-A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rohlf F (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, Setauket, N.Y.

  • SanMiguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer P-S, Edwards K-J, Lee M, Avramova Z, Bennetzen J-L (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut B-S, Tikhonov A, Nakajima Y, Bennetzen J-L (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Sefc K-M, Regner F, Turetschek E, Glössl J, Steinkeller H (1999) Identification of microsatellite sequence in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retrotransposons that wales from a clade within even-toed ungulates. Nature 388:666–670

    Article  CAS  PubMed  Google Scholar 

  • Schulman A-H, Flavell A-J, Ellis T-H (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    CAS  PubMed  Google Scholar 

  • Shannon C-E, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sneath P-H-A, Sokal R-R (1973) Numerical Taxonomy. W.H Freeman and Company, San Francisco

    Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman A-H (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  CAS  PubMed  Google Scholar 

  • Thomas M-R, Scott N-S (1993) Microsatellite repeats in grapevine reveal DNA polymorphism when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma TM, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) High quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2(12):e1326

    Article  PubMed  Google Scholar 

  • Verriès C, Bès C, This P, Tesnière C (2000) Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L, and other Vitis species. Genome 43:366–376

    Article  PubMed  Google Scholar 

  • Vignani R, Scali M, Masi E, Cresti M (2002) Genomic variability among Vitis vinifera L. “Sangiovese” assessed by microsatellite and non-radioactive AFLP test. EJB, April 15, 2002. http://www.ejb.org/content/vol2/issue3/full/3/index.html.

  • Vouillamoz J-F, Monaco A, Costantini L, Stefanini M, Scienza GM-A (2007) The parentage of ‘Sangiovese’, the most important Italian wine grape. Vitis 46:19–22

    Google Scholar 

  • Voytas D-F, Cummings M-O, Konieczny A, Ausubel F-M, Rodermel S-R (1992) Copia-like retrotransposons are ubiquitous among plants. P Natl Acad Sci U S A 89:7124–7128

    Article  CAS  Google Scholar 

  • Wagner H-W, Sefc K-M (1999) Identity 1.0. Centre for applied genetics. University of Agricultural Sciences, Vienna

    Google Scholar 

  • Wang Z, Weber J-L, Zhong G, Tanksley S-D (1994) Survey of plant short tandem DANN repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Yap I-V, Nelson R-J (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Paper Series No. 14. International Rice Research Institute, P.O. Box 933, Manila, Philippines

  • Yeh F-C, Yang R-C, Boyle T-B-J (1999) POPGENE version 1.32, Microsoft Window-based free ware for population genetic analysis. Computer program and documentation distributed by University of Alberta and Centre for International Forestry Research, Alberta, Canada http://www.ualberta.ca/;fyeh/index.htm

Download references

Acknowledgements

The authors would like to thank INTERREG III A, C projects and Dept. of Fruit Science and Plant Protection of Woody Species “G. Scaramuzzi”, “G. Scaramuzzi” University of Pisa for funded this work, IASMA (Trento) for supplying V. rupestris, V. cinerea, V. cordifolia and V. champinii genotypes, IVV-CNR (Torino) for the V. rotundifolia genotype, Tos.Co.Vit. (Pisa) for the ‘Sangiovese’ selected clones and ‘Prugnolo gentile’ genotypes. We also thank CIBIACI (Firenze) for the detection of PCR products on an ABI 310 sequencer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio D’Onofrio.

Additional information

Communicated by R. Velasco

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Onofrio, C., De Lorenzis, G., Giordani, T. et al. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics & Genomes 6, 451–466 (2010). https://doi.org/10.1007/s11295-009-0263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0263-4

Keywords

Navigation