Skip to main content

Advertisement

Log in

The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2018

This article has been updated

Abstract

Background

Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules.

Conclusions

This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 25 July 2018

    In the title of above mentioned article the word ‘versatile’ had been replaced by ‘multifaceted’.

References

  1. S.E.L. Andaloussi, I. Mager, X.O. Breakefield, M.J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013)

    Article  CAS  Google Scholar 

  2. R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. D.D. Yu, Y. Wu, H.Y. Shen, M.M. Lv, W.X. Chen, X.H. Zhang, S.L. Zhong, J.H. Tang, J.H. Zhao, Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 106, 959–964 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. C. Thery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. L. Muller, M. Mitsuhashi, P. Simms, W.E. Gooding, T.L. Whiteside, Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci. Rep. 6, 20254 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. H. Zhao, L. Yang, J. Baddour, A. Achreja, V. Bernard, T. Moss, J.C. Marini, T. Tudawe, E.G. Seviour, F.A. San Lucas, H. Alvarez, S. Gupta, S.N. Maiti, L. Cooper, D. Peehl, P.T. Ram, A. Maitra, D. Nagrath, Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. elife 5, e10250 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. A.S. Azmi, B. Bao, F.H. Sarkar, Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev. 32, 623–642 (2013). https://doi.org/10.1007/s10555-013-9441-9

    Article  PubMed  CAS  Google Scholar 

  8. S.N. Chatterjee, J. Das, Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 49, 1–11 (1967)

    Article  PubMed  CAS  Google Scholar 

  9. T.N. Ellis, M.J. Kuehn, Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. X. Yu, S.L. Harris, A.J. Levine, The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. A. Lespagnol, D. Duflaut, C. Beekman, L. Blanc, G. Fiucci, J.C. Marine, M. Vidal, R. Amson, A. Telerman, Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. C. Thery, M. Ostrowski, E. Segura, Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009)

    Article  PubMed  CAS  Google Scholar 

  13. W. Li, Y. Hu, T. Jiang, Y. Han, G. Han, J. Chen, X. Li, Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64. APMIS 122, 1080–1087 (2014)

    PubMed  CAS  Google Scholar 

  14. I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi, A. De Milito, C. Coscia, E. Iessi, M. Logozzi, A. Molinari, M. Colone, M. Tatti, M. Sargiacomo, S. Fais, Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. J. Faure, G. Lachenal, M. Court, J. Hirrlinger, C. Chatellard-Causse, B. Blot, J. Grange, G. Schoehn, Y. Goldberg, V. Boyer, F. Kirchhoff, G. Raposo, J. Garin, R. Sadoul, Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. G. Lachenal, K. Pernet-Gallay, M. Chivet, F.J. Hemming, A. Belly, G. Bodon, B. Blot, G. Haase, Y. Goldberg, R. Sadoul, Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011)

    Article  PubMed  CAS  Google Scholar 

  17. N. Blanchard, D. Lankar, F. Faure, A. Regnault, C. Dumont, G. Raposo, C. Hivroz, TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168, 3235–3241 (2002)

    Article  PubMed  CAS  Google Scholar 

  18. C.T. Roberts Jr., P. Kurre, Vesicle trafficking and RNA transfer add complexity and connectivity to cell-cell communication. Cancer Res. 73, 3200–3205 (2013)

    Article  PubMed  CAS  Google Scholar 

  19. E.G. Trams, C.J. Lauter, N. Salem Jr., U. Heine, Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981)

    Article  PubMed  CAS  Google Scholar 

  20. B.T. Pan, R.M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983)

    Article  PubMed  CAS  Google Scholar 

  21. C. Harding, J. Heuser, P. Stahl, Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984)

    PubMed  CAS  Google Scholar 

  22. L. Balaj, R. Lessard, L. Dai, Y.J. Cho, S.L. Pomeroy, X.O. Breakefield, J. Skog, Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. C. Admyre, S.M. Johansson, K.R. Qazi, J.J. Filen, R. Lahesmaa, M. Norman, E.P. Neve, A. Scheynius, S. Gabrielsson, Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. M.P. Caby, D. Lankar, C. Vincendeau-Scherrer, G. Raposo, C. Bonnerot, Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879–887 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. R. Shi, P.Y. Wang, X.Y. Li, J.X. Chen, Y. Li, X.Z. Zhang, C.G. Zhang, T. Jiang, W.B. Li, W. Ding, S.J. Cheng, Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6, 26971–26981 (2015)

    PubMed  PubMed Central  Google Scholar 

  27. M. Gonzalez-Begne, B. Lu, X. Han, F.K. Hagen, A.R. Hand, J.E. Melvin, J.R. Yates, Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8, 1304–1314 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. M. Tokuhisa, Y. Ichikawa, N. Kosaka, T. Ochiya, M. Yashiro, K. Hirakawa, T. Kosaka, H. Makino, H. Akiyama, C. Kunisaki, I. Endo, Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10, e0130472 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. T. Pisitkun, R.F. Shen, M.A. Knepper, Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. U. S. A. 101, 13368–13373 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. D.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. C. Thery, S. Amigorena, G. Raposo and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3 22 (2006)

  32. K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger, M. Simons, Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008)

    Article  PubMed  CAS  Google Scholar 

  33. T. Wollert, J.H. Hurley, Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. T. Ravid, J.M. Heidinger, P. Gee, E.M. Khan, T. Goldkorn, c-Cbl-mediated ubiquitinylation is required for epidermal growth factor receptor exit from the early endosomes. J. Biol. Chem. 279, 37153–37162 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. L. Duan, Y. Miura, M. Dimri, B. Majumder, I.L. Dodge, A.L. Reddi, A. Ghosh, N. Fernandes, P. Zhou, K. Mullane-Robinson, N. Rao, S. Donoghue, R.A. Rogers, D. Bowtell, M. Naramura, H. Gu, V. Band, H. Band, Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J. Biol. Chem. 278, 28950–28960 (2003)

    Article  PubMed  CAS  Google Scholar 

  36. O. Schmidt, D. Teis, The ESCRT machinery. Curr. Biol. 22, R116–R120 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. S. Stuffers, C. Sem Wegner, H. Stenmark, A. Brech, Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. T. Kajimoto, T. Okada, S. Miya, L. Zhang, S. Nakamura, Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4, 2712 (2013)

    Article  PubMed  CAS  Google Scholar 

  39. D. Perez-Hernandez, C. Gutierrez-Vazquez, I. Jorge, S. Lopez-Martin, A. Ursa, F. Sanchez-Madrid, J. Vazquez, M. Yanez-Mo, The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948 (2012)

    Article  PubMed  CAS  Google Scholar 

  41. M. Record, K. Carayon, M. Poirot, S. Silvente-Poirot, Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014)

    Article  PubMed  CAS  Google Scholar 

  42. F. Coutant, L. Perrin-Cocon, S. Agaugué, T. Delair, P. André, V. Lotteau, Mature dendritic cell generation promoted by lysophosphatidylcholine. J. Immunol. 169, 1688–1695 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. L. Perrin-Cocon, S. Agaugué, F. Coutant, A. Masurel, S. Bezzine, G. Lambeau, P. André, V. Lotteau, Secretory phospholipase A2 induces dendritic cell maturation. Eur. J. Immunol. 34, 2293–2302 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Q. Ge, Y. Zhou, J. Lu, Y. Bai, X. Xie, Z. Lu, miRNA in plasma exosome is stable under different storage conditions. Molecules 19, 1568–1575 (2014)

    Article  PubMed  CAS  Google Scholar 

  45. C. Kahlert, R. Kalluri, Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 91, 431–437 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. L.A. Mulcahy, R.C. Pink and D.R.F. Carter, Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, https://doi.org/10.3402/jev.v3403.24641 (2014)

  47. T. Tian, Y.L. Zhu, Y.Y. Zhou, G.F. Liang, Y.Y. Wang, F.H. Hu, Z.D. Xiao, Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 289, 22258–22267 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. K.J. Svensson, H.C. Christianson, A. Wittrup, E. Bourseau-Guilmain, E. Lindqvist, L.M. Svensson, M. Morgelin, M. Belting, Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288, 17713–17724 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. D. Zech, S. Rana, M.W. Büchler, M. Zöller, Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun. Signaling 10, 37 (2012)

    Article  CAS  Google Scholar 

  50. S. Rana, S. Yue, D. Stadel, M. Zoller, Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574–1584 (2012)

    Article  PubMed  CAS  Google Scholar 

  51. T.I. Naslund, D. Paquin-Proulx, P.T. Paredes, H. Vallhov, J.K. Sandberg, S. Gabrielsson, Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 28, 171–180 (2014)

    Article  PubMed  Google Scholar 

  52. J.R. Goldenring, A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. N. Jae, D.G. McEwan, Y. Manavski, R.A. Boon, S. Dimmeler, Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Lett. 589, 3182–3188 (2015)

    Article  PubMed  CAS  Google Scholar 

  54. S.N. Hurwitz, M.M. Conlon, M.A. Rider, N.C. Brownstein, D.G. Meckes Jr., Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J. Extracell. Vesicles 5, 31295 (2016)

    Article  PubMed  CAS  Google Scholar 

  55. C. Hsu, Y. Morohashi, S. Yoshimura, N. Manrique-Hoyos, S. Jung, M.A. Lauterbach, M. Bakhti, M. Gronborg, W. Mobius, J. Rhee, F.A. Barr, M. Simons, Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. C.A. Thompson, A. Purushothaman, V.C. Ramani, I. Vlodavsky, R.D. Sanderson, Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. 288, 10093–10099 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. A. Savina, C.M. Fader, M.T. Damiani, M.I. Colombo, Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005)

    Article  PubMed  CAS  Google Scholar 

  58. H.W. King, M.Z. Michael, J.M. Gleadle, Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12, 1–10 (2012)

    Article  CAS  Google Scholar 

  59. A.Z. Ayob, T.S. Ramasamy, Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 25, 20 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  60. K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008)

    Article  PubMed  CAS  Google Scholar 

  61. M.M. Valenzuela, H.R. Ferguson Bennit, A. Gonda, C.J. Diaz Osterman, A. Hibma, S. Khan, N.R. Wall, Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron. 8, 65–73 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. E. Donnarumma, D. Fiore, M. Nappa, G. Roscigno, A. Adamo, M. Iaboni, V. Russo, A. Affinito, I. Puoti, C. Quintavalle, A. Rienzo, S. Piscuoglio, R. Thomas, G. Condorelli, Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8, 19592–19608 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. Ramteke, H. Ting, C. Agarwal, S. Mateen, R. Somasagara, A. Hussain, M. Graner, B. Frederick, R. Agarwal, G. Deep, Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog. 54, 554–565 (2015)

    Article  PubMed  CAS  Google Scholar 

  64. S. Bao, Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A.B. Hjelmeland, Q. Shi, R.E. McLendon, D.D. Bigner, J.N. Rich, Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006)

    Article  PubMed  CAS  Google Scholar 

  65. L. Ricci-Vitiani, R. Pallini, M. Biffoni, M. Todaro, G. Invernici, T. Cenci, G. Maira, E.A. Parati, G. Stassi, L.M. Larocca, R. De Maria, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010)

    Article  PubMed  CAS  Google Scholar 

  66. P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  PubMed  CAS  Google Scholar 

  67. C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco, M.C. Deregibus, C. Tetta, B. Bussolati, G. Camussi, Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011)

    Article  PubMed  CAS  Google Scholar 

  68. A. Conigliaro, V. Costa, A. Lo Dico, L. Saieva, S. Buccheri, F. Dieli, M. Manno, S. Raccosta, C. Mancone, M. Tripodi, G. De Leo, R. Alessandro, CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer 14, 155 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  69. E.J. Ekstrom, C. Bergenfelz, V. von Bulow, F. Serifler, E. Carlemalm, G. Jonsson, T. Andersson, K. Leandersson, WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer 13, 88 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. S.K. Gopal, D.W. Greening, E.G. Hanssen, H.J. Zhu, R.J. Simpson, R.A. Mathias, Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget 7, 19709–19722 (2016)

    PubMed  PubMed Central  Google Scholar 

  71. Y. Liu, F. Luo, B. Wang, H. Li, Y. Xu, X. Liu, L. Shi, X. Lu, W. Xu, L. Lu, Y. Qin, Q. Xiang, Q. Liu, STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370, 125–135 (2016)

    Article  PubMed  CAS  Google Scholar 

  72. Y.K. Chan, H. Zhang, P. Liu, S.W. Tsao, M.L. Lung, N.K. Mak, R. Ngok-Shun Wong, P. Ying-Kit Yue, Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int. J. Cancer 137, 1830–1841 (2015)

    Article  PubMed  CAS  Google Scholar 

  73. K. Pakravan, S. Babashah, M. Sadeghizadeh, S.J. Mowla, M. Mossahebi-Mohammadi, F. Ataei, N. Dana, M. Javan, MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell. Oncol. 40, 457–470 (2017)

    Article  CAS  Google Scholar 

  74. H. Tadokoro, T. Umezu, K. Ohyashiki, T. Hirano, J.H. Ohyashiki, Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J. Biol. Chem. 288, 34343–34351 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. T. Umezu, H. Tadokoro, K. Azuma, S. Yoshizawa, K. Ohyashiki, J.H. Ohyashiki, Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124, 3748–3757 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. S. Shi, Q. Zhang, Y. Xia, B. You, Y. Shan, L. Bao, L. Li, Y. You, Z. Gu, Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am. J. Cancer Res. 6, 459–472 (2016)

    CAS  Google Scholar 

  78. C.A. Franzen, R.H. Blackwell, V. Todorovic, K.A. Greco, K.E. Foreman, R.C. Flanigan, P.C. Kuo, G.N. Gupta, Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogene 4, e163 (2015)

    Article  CAS  Google Scholar 

  79. M. Aga, G.L. Bentz, S. Raffa, M.R. Torrisi, S. Kondo, N. Wakisaka, T. Yoshizaki, J.S. Pagano, J. Shackelford, Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33, 4613–4622 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. W. Qin, Y. Tsukasaki, S. Dasgupta, N. Mukhopadhyay, M. Ikebe, E.R. Sauter, Exosomes in human breast milk promote emt. Clin. Cancer Res. 22, 4517–4524 (2016)

    Article  PubMed  CAS  Google Scholar 

  81. J. Zhang, L. Ma, MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 31, 653–662 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. D. Xiao, S. Barry, D. Kmetz, M. Egger, J. Pan, S.N. Rai, J. Qu, K.M. McMasters, H. Hao, Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 376, 318–327 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. I.J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003)

    Article  PubMed  CAS  Google Scholar 

  84. M. Rodriguez, J. Silva, A. Herrera, M. Herrera, C. Pena, P. Martin, B. Gil-Calderon, M.J. Larriba, M.J. Coronado, B. Soldevilla, V.S. Turrion, M. Provencio, A. Sanchez, F. Bonilla, V. Garcia-Barberan, Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget 6, 40575–40587 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  85. T. Arita, D. Ichikawa, H. Konishi, S. Komatsu, A. Shiozaki, S. Ogino, Y. Fujita, H. Hiramoto, J. Hamada, K. Shoda, T. Kosuga, H. Fujiwara, K. Okamoto, E. Otsuji, Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells. Oncotarget 7, 56855–56863 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  86. L. Li, C. Li, S. Wang, Z. Wang, J. Jiang, W. Wang, X. Li, J. Chen, K. Liu, C. Li, G. Zhu, Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver mir-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 76, 1770–1780 (2016)

    Article  PubMed  CAS  Google Scholar 

  87. J. Liao, R. Liu, Y.J. Shi, L.H. Yin, Y.P. Pu, Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int. J. Oncol. 48, 2567–2579 (2016)

    Article  PubMed  CAS  Google Scholar 

  88. M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J.-D. Huang, E. Song, Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 10, 1–13 (2011)

    Article  CAS  Google Scholar 

  89. X.L. Bai, Q. Zhang, L.Y. Ye, F. Liang, X. Sun, Y. Chen, Q.D. Hu, Q.H. Fu, W. Su, Z. Chen, Z.P. Zhuang, T.B. Liang, Myocyte enhancer factor 2C regulation of hepatocellular carcinoma via vascular endothelial growth factor and Wnt/beta-catenin signaling. Oncogene 34, 4089–4097 (2015)

    Article  PubMed  CAS  Google Scholar 

  90. M.Y. Fong, W. Zhou, L. Liu, A.Y. Alontaga, M. Chandra, J. Ashby, A. Chow, S.T. O'Connor, S. Li, A.R. Chin, G. Somlo, M. Palomares, Z. Li, J.R. Tremblay, A. Tsuyada, G. Sun, M.A. Reid, X. Wu, P. Swiderski, X. Ren, Y. Shi, M. Kong, W. Zhong, Y. Chen, S.E. Wang, Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. M.M. Gottesman, Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002)

    Article  PubMed  CAS  Google Scholar 

  92. W.X. Chen, X.M. Liu, M.M. Lv, L. Chen, J.H. Zhao, S.L. Zhong, M.H. Ji, Q. Hu, Z. Luo, J.Z. Wu, J.H. Tang, Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9, e95240 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. M.M. Lv, X.Y. Zhu, W.X. Chen, S.L. Zhong, Q. Hu, T.F. Ma, J. Zhang, L. Chen, J.H. Tang, J.H. Zhao, Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol. 35, 10773–10779 (2014)

    Article  PubMed  CAS  Google Scholar 

  94. C.L. Au Yeung, N.N. Co, T. Tsuruga, T.L. Yeung, S.Y. Kwan, C.S. Leung, Y. Li, E.S. Lu, K. Kwan, K.K. Wong, R. Schmandt, K.H. Lu, S.C. Mok, Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 7, 11150 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Y. Hu, C. Yan, L. Mu, K. Huang, X. Li, D. Tao, Y. Wu, J. Qin, Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 10, e0125625 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. R. Ji, B. Zhang, X. Zhang, J. Xue, X. Yuan, Y. Yan, M. Wang, W. Zhu, H. Qian, W. Xu, Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 14, 2473–2483 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. T. Aung, B. Chapuy, D. Vogel, D. Wenzel, M. Oppermann, M. Lahmann, T. Weinhage, K. Menck, T. Hupfeld, R. Koch, L. Trumper, G.G. Wulf, Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. U. S. A. 108, 15336–15341 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  98. V. Ciravolo, V. Huber, G.C. Ghedini, E. Venturelli, F. Bianchi, M. Campiglio, D. Morelli, A. Villa, P. Della Mina, S. Menard, P. Filipazzi, L. Rivoltini, E. Tagliabue, S.M. Pupa, Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J. Cell. Physiol. 227, 658–667 (2012)

    Article  PubMed  CAS  Google Scholar 

  99. R. Safaei, B.J. Larson, T.C. Cheng, M.A. Gibson, S. Otani, W. Naerdemann, S.B. Howell, Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 4, 1595–1604 (2005)

    Article  PubMed  CAS  Google Scholar 

  100. S. Loewer, M.N. Cabili, M. Guttman, Y.H. Loh, K. Thomas, I.H. Park, M. Garber, M. Curran, T. Onder, S. Agarwal, P.D. Manos, S. Datta, E.S. Lander, T.M. Schlaeger, G.Q. Daley, J.L. Rinn, Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Y. Pan, C. Li, J. Chen, K. Zhang, X. Chu, R. Wang, L. Chen, The emerging roles of long noncoding rna ror (lincrna-ror) and its possible mechanisms in human cancers. Cell. Physiol. Biochem. 40, 219–229 (2016)

    Article  PubMed  CAS  Google Scholar 

  102. K. Takahashi, I.K. Yan, T. Kogure, H. Haga, T. Patel, Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 4, 458–467 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. J. Fan, Y. Xing, X. Wen, R. Jia, H. Ni, J. He, X. Ding, H. Pan, G. Qian, S. Ge, A.R. Hoffman, H. Zhang, X. Fan, Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 16, 139 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. T.H. Cheung, T.A. Rando, Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013)

    Article  PubMed  CAS  Google Scholar 

  105. P.K. Lim, S.A. Bliss, S.A. Patel, M. Taborga, M.A. Dave, L.A. Gregory, S.J. Greco, M. Bryan, P.S. Patel, P. Rameshwar, Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011)

    Article  PubMed  CAS  Google Scholar 

  106. M. Ono, N. Kosaka, N. Tominaga, Y. Yoshioka, F. Takeshita, R.-u. Takahashi, M. Yoshida, H. Tsuda, K. Tamura, T. Ochiya, Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014)

    Article  PubMed  CAS  Google Scholar 

  107. S.A. Bliss, G. Sinha, O. Sandiford, L. Williams, D.J. Engelberth, K. Guiro, L.L. Isenalumhe, S.J. Greco, S. Ayer, M. Bryan, R. Kumar, N. Ponzio, P. Rameshwar, Mesenchymal stem cell-derived exosomes stimulates cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 76, 5832–5844 (2016)

    Article  PubMed  CAS  Google Scholar 

  108. M. Collado, M.A. Blasco, M. Serrano, Cellular senescence in cancer and aging. Cell 130, 223–233 (2007)

    Article  PubMed  CAS  Google Scholar 

  109. P. Kahlem, B. Dorken, C.A. Schmitt, Cellular senescence in cancer treatment: friend or foe? J. Clin. Invest. 113, 169–174 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. H.D. Skinner, V.C. Sandulache, T.J. Ow, R.E. Meyn, J.S. Yordy, B.M. Beadle, A.L. Fitzgerald, U. Giri, K.K. Ang, J.N. Myers, TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin. Cancer Res. 18, 290–300 (2012)

    Article  PubMed  CAS  Google Scholar 

  111. B. Jonchere, A. Vetillard, B. Toutain, D. Lam, A.C. Bernard, C. Henry, S. De Carne Trecesson, E. Gamelin, P. Juin, C. Guette, O. Coqueret, Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget 6, 409–426 (2015)

    Article  PubMed  Google Scholar 

  112. A.L.C. Ong, T.S. Ramasamy, Role of sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res. Rev. 43, 64–80 (2018)

    Article  PubMed  CAS  Google Scholar 

  113. X. Yu, T. Riley, A.J. Levine, The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201–2212 (2009)

    Article  PubMed  CAS  Google Scholar 

  114. Y. Sun, W. Zheng, Z. Guo, Q. Ju, L. Zhu, J. Gao, L. Zhou, F. Liu, Y. Xu, Q. Zhan, Z. Zhou, W. Sun, X. Zhao, A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci. Rep. 6, 28083 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. N. Malaquin, A. Martinez, F. Rodier, Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp. Gerontol. 82, 39–49 (2016)

    Article  PubMed  CAS  Google Scholar 

  116. J.P. Coppe, K. Kauser, J. Campisi, C.M. Beausejour, Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006)

    Article  PubMed  CAS  Google Scholar 

  117. X. Sun, M. Vale, E. Leung, J.R. Kanwar, R. Gupta, G.W. Krissansen, Mouse B7-H3 induces antitumor immunity. Gene Ther. 10, 1728–1734 (2003)

    Article  PubMed  CAS  Google Scholar 

  118. B.D. Lehmann, M.S. Paine, A.M. Brooks, J.A. McCubrey, R.H. Renegar, R. Wang, D.M. Terrian, Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008)

    Article  PubMed  CAS  Google Scholar 

  119. K. Weiner-Gorzel, E. Dempsey, M. Milewska, A. McGoldrick, V. Toh, A. Walsh, S. Lindsay, L. Gubbins, A. Cannon, D. Sharpe, J. O'Sullivan, M. Murphy, S.F. Madden, M. Kell, A. McCann, F. Furlong, Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 4, 745–758 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. F. Furlong, P. Fitzpatrick, S. O'Toole, S. Phelan, B. McGrogan, A. Maguire, A. O'Grady, M. Gallagher, M. Prencipe, A. McGoldrick, P. McGettigan, D. Brennan, O. Sheils, C. Martin, E. W. Kay, J. O'Leary, A. McCann, Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J. Pathol. 226, 746–755 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. B.W. van Balkom, O.G. de Jong, M. Smits, J. Brummelman, K. den Ouden, P.M. de Bree, M.A. van Eijndhoven, D.M. Pegtel, W. Stoorvogel, T. Wurdinger, M.C. Verhaar, Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121, 3997–4006 (2013)

    Article  PubMed  CAS  Google Scholar 

  122. S. Baroni, S. Romero-Cordoba, I. Plantamura, M. Dugo, E. D'Ippolito, A. Cataldo, G. Cosentino, V. Angeloni, A. Rossini, M.G. Daidone, M.V. Iorio, Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7, e2312 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. A. Gutkin, O. Uziel, E. Beery, J. Nordenberg, M. Pinchasi, H. Goldvaser, S. Henick, M. Goldberg, M. Lahav, Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget 7, 59173–59188 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  124. J. Gu, H. Qian, L. Shen, X. Zhang, W. Zhu, L. Huang, Y. Yan, F. Mao, C. Zhao, Y. Shi, W. Xu, Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-beta/Smad pathway. PLoS One 7, e52465 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. J. Webber, R. Steadman, M.D. Mason, Z. Tabi, A. Clayton, Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70, 9621–9630 (2010)

    Article  PubMed  CAS  Google Scholar 

  126. A. Orimo, Y. Tomioka, Y. Shimizu, M. Sato, S. Oigawa, K. Kamata, Y. Nogi, S. Inoue, M. Takahashi, T. Hata, M. Muramatsu, Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin. Cancer Res. 7, 3097–3105 (2001)

    PubMed  CAS  Google Scholar 

  127. L.M. Sobral, A. Bufalino, M.A. Lopes, E. Graner, T. Salo, R.D. Coletta, Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol. 47, 840–846 (2011)

    Article  PubMed  CAS  Google Scholar 

  128. S. Vong, R. Kalluri, The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2, 1139–1145 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. C. Corrado, L. Saieva, S. Raimondo, A. Santoro, G. De Leo, R. Alessandro, Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J. Cell. Mol. Med. 20, 1829–1839 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. L. Wu, X. Zhang, B. Zhang, H. Shi, X. Yuan, Y. Sun, Z. Pan, H. Qian, W. Xu, Exosomes derived from gastric cancer cells activate NF-kappaB pathway in macrophages to promote cancer progression. Tumour Biol. 37, 12169–12180 (2016)

    Article  PubMed  CAS  Google Scholar 

  131. M. Egeblad, E.S. Nakasone, Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. L.R. Languino, A. Singh, M. Prisco, G.J. Inman, A. Luginbuhl, J.M. Curry, A.P. South, Exosome-mediated transfer from the tumor microenvironment increases TGFbeta signaling in squamous cell carcinoma. Am. J. Transl. Res. 8, 2432–2437 (2016)

    PubMed  PubMed Central  CAS  Google Scholar 

  133. M.C. Boelens, T.J. Wu, B.Y. Nabet, B. Xu, Y. Qiu, T. Yoon, D.J. Azzam, C. Twyman-Saint Victor, B.Z. Wiemann, H. Ishwaran, P.J. Ter Brugge, J. Jonkers, J. Slingerland, A.J. Minn, Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. D.J. Prockop, Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997)

    Article  PubMed  CAS  Google Scholar 

  135. G. Lazennec, C. Jorgensen, Concise Review: Adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26, 1387–1394 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. B. Cousin, E. Ravet, S. Poglio, F. De Toni, M. Bertuzzi, H. Lulka, I. Touil, M. Andre, J.L. Grolleau, J.M. Peron, J.P. Chavoin, P. Bourin, L. Penicaud, L. Casteilla, L. Buscail, P. Cordelier, Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4, e6278 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. L. Qiao, Z.L. Xu, T.J. Zhao, L.H. Ye, X.D. Zhang, Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 269, 67–77 (2008)

    Article  PubMed  CAS  Google Scholar 

  138. Y. Yulyana, I.A. Ho, K.C. Sia, J.P. Newman, X.Y. Toh, B.B. Endaya, J.K. Chan, M. Gnecchi, H. Huynh, A.Y. Chung, K.H. Lim, H.S. Leong, N.G. Iyer, K.M. Hui, P.Y. Lam, Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol. Ther. 23, 746–756 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. O. Attar-Schneider, V. Zismanov, L. Drucker, M. Gottfried, Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumor Biol. 37, 4755–4765 (2016)

    Article  CAS  Google Scholar 

  140. J.K. Lee, S.R. Park, B.K. Jung, Y.K. Jeon, Y.S. Lee, M.K. Kim, Y.G. Kim, J.Y. Jang, C.W. Kim, Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8, e84256 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. A.Y. Khakoo, S. Pati, S.A. Anderson, W. Reid, M.F. Elshal, I.I. Rovira, A.T. Nguyen, D. Malide, C.A. Combs, G. Hall, J. Zhang, M. Raffeld, T.B. Rogers, W. Stetler-Stevenson, J.A. Frank, M. Reitz, T. Finkel, Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 203, 1235–1247 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. J.F. Ji, B.P. He, S.T. Dheen, S.S.W. Tay, Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22, 415–427 (2004)

    Article  PubMed  CAS  Google Scholar 

  143. B.M. Beckermann, G. Kallifatidis, A. Groth, D. Frommhold, A. Apel, J. Mattern, A.V. Salnikov, G. Moldenhauer, W. Wagner, A. Diehlmann, R. Saffrich, M. Schubert, A.D. Ho, N. Giese, M.W. Buchler, H. Friess, P. Buchler, I. Herr, VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 99, 622–631 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. A. Schmidt, D. Ladage, T. Schinköthe, U. Klausmann, C. Ulrichs, F.J. Klinz, K. Brixius, S. Arnhold, B. Desai, U. Mehlhorn, R.H.G. Schwinger, P. Staib, K. Addicks, W. Bloch, Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24, 1750–1758 (2006)

    Article  PubMed  CAS  Google Scholar 

  145. C. Ke, J. Chen, Y. Guo, Z.W. Chen, J. Cai, Migration mechanism of mesenchymal stem cells studied by QD/NSOM. Biochim. Biophys. Acta Biomembr. 1848, 859–868 (2015)

    Article  CAS  Google Scholar 

  146. G. Ren, X. Zhao, Y. Wang, X. Zhang, X. Chen, C. Xu, Z.R. Yuan, A.I. Roberts, L. Zhang, B. Zheng, T. Wen, Y. Han, A.B. Rabson, J.A. Tischfield, C. Shao, Y. Shi, CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 11, 812–824 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. B.G. Cuiffo, A. Campagne, G.W. Bell, A. Lembo, F. Orso, E.C. Lien, M.K. Bhasin, M. Raimo, S.E. Hanson, A. Marusyk, D. El-Ashry, P. Hematti, K. Polyak, F. Mechta-Grigoriou, O. Mariani, S. Volinia, A. Vincent-Salomon, D. Taverna, A.E. Karnoub, MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 15, 762–774 (2014)

    Article  PubMed  CAS  Google Scholar 

  148. A. De Boeck, P. Pauwels, K. Hensen, J.L. Rummens, W. Westbroek, A. Hendrix, D. Maynard, H. Denys, K. Lambein, G. Braems, C. Gespach, M. Bracke, O. De Wever, Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62, 550–560 (2013)

    Article  PubMed  CAS  Google Scholar 

  149. Y. Huang, P. Yu, W. Li, G. Ren, A.I. Roberts, W. Cao, X. Zhang, J. Su, X. Chen, Q. Chen, P. Shou, C. Xu, L. Du, L. Lin, N. Xie, L. Zhang, Y. Wang, Y. Shi, p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33, 3830–3838 (2014)

    Article  PubMed  CAS  Google Scholar 

  150. K. McLean, Y. Gong, Y. Choi, N. Deng, K. Yang, S. Bai, L. Cabrera, E. Keller, L. McCauley, K.R. Cho, R.J. Buckanovich, Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Invest. 121, 3206–3219 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. F. Vianello, F. Villanova, V. Tisato, S. Lymperi, K.-K. Ho, A.R. Gomes, D. Marin, D. Bonnet, J. Apperley, E.W.F. Lam, F. Dazzi, Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95, 1081–1089 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. L.Y. Lin, L.M. Du, K. Cao, Y. Huang, P.F. Yu, L.Y. Zhang, F.Y. Li, Y. Wang, Y.F. Shi, Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene 35, 6038–6042 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. X. Song, Y. Ding, G. Liu, X. Yang, R. Zhao, Y. Zhang, X. Zhao, G.J. Anderson, G. Nie, Cancer Cell-derived exosomes induce mitogen-activated protein kinase-dependent monocyte survival by transport of functional receptor tyrosine kinases. J. Biol. Chem. 291, 8453–8464 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. J. Choi, J. Gyamfi, H. Jang and J.S. Koo, The role of tumor-associated macrophage in breast cancer biology. Histol. Histopathol. 33, 133–145 (2018)

  155. F. Leonard, L.T. Curtis, M.J. Ware, T. Nosrat, X. Liu, K. Yokoi, H.B. Frieboes, B. Godin, Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front. Immunol. 8, 693 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  156. Z. Chen, X. Feng, C.J. Herting, V. Alvarez Garcia, K. Nie, W.W. Pong, R. Rasmussen, B. Dwivedi, S. Seby, S.A. Wolf, D.H. Gutmann, D. Hambardzumyan, Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. M. Yin, X. Li, S. Tan, H.J. Zhou, W. Ji, S. Bellone, X. Xu, H. Zhang, A.D. Santin, G. Lou, W. Min, Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J. Clin. Invest. 126, 4157–4173 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  158. H. Shinohara, Y. Kuranaga, M. Kumazaki, N. Sugito, Y. Yoshikawa, T. Takai, K. Taniguchi, Y. Ito, Y. Akao, Regulated polarization of tumor-associated macrophages by mir-145 via colorectal cancer–derived extracellular vesicles. J. Immunol. 199, 1505–1515 (2017)

    Article  PubMed  CAS  Google Scholar 

  159. J. Wang, K. De Veirman, S. Faict, M.A. Frassanito, D. Ribatti, A. Vacca, E. Menu, Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J. Pathol. 239, 162–173 (2016)

    Article  PubMed  CAS  Google Scholar 

  160. U. Putz, J. Howitt, A. Doan, C.-P. Goh, L.-H. Low, J. Silke, S.-S. Tan, The tumor suppressor pten is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal. 5, ra70 (2012)

    Article  PubMed  CAS  Google Scholar 

  161. A.M.M.T. Reza, Y.-J. Choi, H. Yasuda, J.-H. Kim, Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci. Rep. 6, 38498 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. S.F. Ko, H.K. Yip, Y.Y. Zhen, C.C. Lee, C.C. Lee, C.C. Huang, S.H. Ng, J.W. Lin, Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer t-cell responses, and histopathological features. Stem Cells Int. 2015, 853506 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. F. Alcayaga-Miranda, P.L. Gonzalez, A. Lopez-Verrilli, M. Varas-Godoy, C. Aguila-Diaz, L. Contreras, M. Khoury, Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 7, 44462–44477 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  164. H.D. Lee, B.H. Koo, Y.H. Kim, O.H. Jeon, D.S. Kim, Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J. 26, 3084–3095 (2012)

    Article  PubMed  CAS  Google Scholar 

  165. B. Costa-Silva, N.M. Aiello, A.J. Ocean, S. Singh, H. Zhang, B.K. Thakur, A. Becker, A. Hoshino, M.T. Mark, H. Molina, J. Xiang, T. Zhang, T.M. Theilen, G. Garcia-Santos, C. Williams, Y. Ararso, Y. Huang, G. Rodrigues, T.L. Shen, K.J. Labori, I.M. Lothe, E.H. Kure, J. Hernandez, A. Doussot, S.H. Ebbesen, P.M. Grandgenett, M.A. Hollingsworth, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, R.E. Schwartz, I. Matei, H. Peinado, B.Z. Stanger, J. Bromberg, D. Lyden, Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. J. Sceneay, M.J. Smyth, A. Moller, The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013)

    Article  PubMed  CAS  Google Scholar 

  167. H. Peinado, M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno, M. Hergueta-Redondo, C. Williams, G. Garcia-Santos, C. Ghajar, A. Nitadori-Hoshino, C. Hoffman, K. Badal, B.A. Garcia, M.K. Callahan, J. Yuan, V.R. Martins, J. Skog, R.N. Kaplan, M.S. Brady, J.D. Wolchok, P.B. Chapman, Y. Kang, J. Bromberg, D. Lyden, Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. T. Jung, D. Castellana, P. Klingbeil, I. Cuesta Hernandez, M. Vitacolonna, D.J. Orlicky, S.R. Roffler, P. Brodt, M. Zoller, CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11, 1093–1105 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. J.L. Hood, R.S. San and S.A. Wickline, Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011)

  170. C.A. Sanchez, E.I. Andahur, R. Valenzuela, E.A. Castellon, J.A. Fulla, C.G. Ramos, J.C. Trivino, Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993–4008 (2016)

    Article  PubMed  Google Scholar 

  171. A. Hoshino, B. Costa-Silva, T.L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L. Pharmer, T. King, L. Bojmar, A.E. Davies, Y. Ararso, T. Zhang, H. Zhang, J. Hernandez, J.M. Weiss, V.D. Dumont-Cole, K. Kramer, L.H. Wexler, A. Narendran, G.K. Schwartz, J.H. Healey, P. Sandstrom, K.J. Labori, E.H. Kure, P.M. Grandgenett, M.A. Hollingsworth, M. de Sousa, S. Kaur, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, M.S. Brady, O. Fodstad, V. Muller, K. Pantel, A.J. Minn, M.J. Bissell, B.A. Garcia, Y. Kang, V.K. Rajasekhar, C.M. Ghajar, I. Matei, H. Peinado, J. Bromberg, D. Lyden, Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. S. Keller, J. Ridinger, A.K. Rupp, J.W. Janssen, P. Altevogt, Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9, 86 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. C.L. Chen, Y.F. Lai, P. Tang, K.Y. Chien, J.S. Yu, C.H. Tsai, H.W. Chen, C.C. Wu, T. Chung, C.W. Hsu, C.D. Chen, Y.S. Chang, P.L. Chang, Y.T. Chen, Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J. Proteome Res. 11, 5611–5629 (2012)

    Article  PubMed  CAS  Google Scholar 

  174. A. Kannan, R.B. Wells, S. Sivakumar, S. Komatsu, K.P. Singh, B. Samten, J.V. Philley, E.R. Sauter, M. Ikebe, S. Idell, S. Gupta, S. Dasgupta, Mitochondrial reprogramming regulates breast cancer progression. Clin. Cancer Res. 22, 3348–3360 (2016)

    Article  PubMed  CAS  Google Scholar 

  175. M.J. Donovan, M. Noerholm, S. Bentink, S. Belzer, J. Skog, V. O'Neill, J.S. Cochran, G.A. Brown, A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 18, 370–375 (2015)

    Article  PubMed  CAS  Google Scholar 

  176. M. He, H. Qin, T.C. Poon, S.C. Sze, X. Ding, N.N. Co, S.M. Ngai, T.F. Chan, N. Wong, Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis 36, 1008–1018 (2015)

    Article  PubMed  CAS  Google Scholar 

  177. G.K. Joshi, S. Deitz-McElyea, T. Liyanage, K. Lawrence, S. Mali, R. Sardar, M. Korc, Label-free nanoplasmonic-based short noncoding rna sensing at attomolar concentrations allows for quantitative and highly specific assay of microrna-10b in biological fluids and circulating exosomes. ACS Nano 9, 11075–11089 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. L. Manterola, E. Guruceaga, J. Gallego Perez-Larraya, M. Gonzalez-Huarriz, P. Jauregui, S. Tejada, R. Diez-Valle, V. Segura, N. Sampron, C. Barrena, I. Ruiz, A. Agirre, A. Ayuso, J. Rodriguez, A. Gonzalez, E. Xipell, A. Matheu, A. Lopez de Munain, T. Tunon, I. Zazpe, J. Garcia-Foncillas, S. Paris, J.Y. Delattre, M.M. Alonso, A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-Oncology 16, 520–527 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. J. Skog, T. Wurdinger, S. van Rijn, D.H. Meijer, L. Gainche, W.T. Curry, B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. P. Kharaziha, D. Chioureas, D. Rutishauser, G. Baltatzis, L. Lennartsson, P. Fonseca, A. Azimi, K. Hultenby, R. Zubarev, A. Ullen, J. Yachnin, S. Nilsson, T. Panaretakis, Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 6, 21740–21754 (2015)

    PubMed  PubMed Central  Google Scholar 

  181. K. Kawakami, Y. Fujita, T. Kato, K. Mizutani, K. Kameyama, H. Tsumoto, Y. Miura, T. Deguchi, M. Ito, Integrin beta4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol. 47, 384–390 (2015)

    Article  PubMed  CAS  Google Scholar 

  182. Y.Y. Yeh, H.G. Ozer, A.M. Lehman, K. Maddocks, L. Yu, A.J. Johnson, J.C. Byrd, Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 125, 3297–3305 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. J. Silva, V. Garcia, M. Rodriguez, M. Compte, E. Cisneros, P. Veguillas, J.M. Garcia, G. Dominguez, Y. Campos-Martin, J. Cuevas, C. Pena, M. Herrera, R. Diaz, N. Mohammed, F. Bonilla, Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosom. Cancer 51, 409–418 (2012)

    Article  PubMed  CAS  Google Scholar 

  184. N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, T. Ochiya, Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. M. Fabbri, A. Paone, F. Calore, R. Galli, E. Gaudio, R. Santhanam, F. Lovat, P. Fadda, C. Mao, G.J. Nuovo, N. Zanesi, M. Crawford, G.H. Ozer, D. Wernicke, H. Alder, M.A. Caligiuri, P. Nana-Sinkam, D. Perrotti, C.M. Croce, MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. U. S. A. 109, E2110–E2116 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  186. F. Chalmin, S. Ladoire, G. Mignot, J. Vincent, M. Bruchard, J.P. Remy-Martin, W. Boireau, A. Rouleau, B. Simon, D. Lanneau, A. De Thonel, G. Multhoff, A. Hamman, F. Martin, B. Chauffert, E. Solary, L. Zitvogel, C. Garrido, B. Ryffel, C. Borg, L. Apetoh, C. Rebe, F. Ghiringhelli, Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457–471 (2010)

    PubMed  PubMed Central  CAS  Google Scholar 

  187. A. Bobrie, S. Krumeich, F. Reyal, C. Recchi, L.F. Moita, M.C. Seabra, M. Ostrowski, C. Théry, Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72, 4920–4930 (2012)

    Article  PubMed  CAS  Google Scholar 

  188. M. Ruiz-Martinez, A. Navarro, R.M. Marrades, N. Vinolas, S. Santasusagna, C. Munoz, J. Ramirez, L. Molins, M. Monzo, YKT6 expression, exosome release, and survival in non-small cell lung cancer. Oncotarget 7, 51515–51524 (2016)

    PubMed  PubMed Central  Google Scholar 

  189. A. Bosque, L. Dietz, A. Gallego-Lleyda, M. Sanclemente, M. Iturralde, J. Naval, M.A. Alava, L. Martinez-Lostao, H.J. Thierse, A. Anel, Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget 7, 29287–29305 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  190. C. Federici, F. Petrucci, S. Caimi, A. Cesolini, M. Logozzi, M. Borghi, S. D'Ilio, L. Lugini, N. Violante, T. Azzarito, C. Majorani, D. Brambilla, S. Fais, Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 9, e88193 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. X.Q. Li, J.T. Liu, L.L. Fan, Y. Liu, L. Cheng, F. Wang, H.Q. Yu, J. Gao, W. Wei, H. Wang, G.P. Sun, Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget 7, 24585–24595 (2016)

    PubMed  PubMed Central  Google Scholar 

  192. H.G. Zhang, H. Kim, C. Liu, S. Yu, J. Wang, W.E. Grizzle, R.P. Kimberly, S. Barnes, Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim. Biophys. Acta 1773, 1116–1123 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. T.S. Ramasamy, A.Z. Ayob, H.H. Myint, S. Thiagarajah, F. Amini, Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int. 15, 96 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. S. Amigorena, Cancer immunotherapy using dendritic cell-derived exosomes. Medicina (B Aires) 60 Suppl 2, 51–54 (2000)

    CAS  Google Scholar 

  195. G.G. Romagnoli, B.B. Zelante, P.A. Toniolo, I.K. Migliori, J.A.M. Barbuto, Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front. Immunol. 5, 692 (2014)

    PubMed  Google Scholar 

  196. Q. Rao, B. Zuo, Z. Lu, X. Gao, A. You, C. Wu, Z. Du, H. Yin, Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and human in vitro. Hepatology 64, 456–472 (2016)

    Article  PubMed  CAS  Google Scholar 

  197. J. Wang, L. Wang, Z. Lin, L. Tao, M. Chen, More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol. Med. Rep. 9, 125–131 (2014)

    Article  PubMed  CAS  Google Scholar 

  198. M. Damo, D.S. Wilson, E. Simeoni, J.A. Hubbell, TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci. Rep. 5, 17622 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Y. Xie, O. Bai, H. Zhang, J. Yuan, S. Zong, R. Chibbar, K. Slattery, M. Qureshi, Y. Wei, Y. Deng, J. Xiang, Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J. Cell. Mol. Med. 14, 2655–2666 (2010)

    Article  PubMed  CAS  Google Scholar 

  200. L.H. Lv, Y.L. Wan, Y. Lin, W. Zhang, M. Yang, G.L. Li, H.M. Lin, C.Z. Shang, Y.J. Chen, J. Min, Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J. Biol. Chem. 287, 15874–15885 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. G. Fuhrmann, A. Serio, M. Mazo, R. Nair, M.M. Stevens, Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release 205, 35–44 (2015)

    Article  PubMed  CAS  Google Scholar 

  202. F. Aqil, H. Kausar, A.K. Agrawal, J. Jeyabalan, A.H. Kyakulaga, R. Munagala, R. Gupta, Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol. 101, 12–21 (2016)

    Article  PubMed  CAS  Google Scholar 

  203. M.S. Kim, M.J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N.L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S.D. Hingtgen, A.V. Kabanov, E.V. Batrakova, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12, 655–664 (2016)

    Article  PubMed  CAS  Google Scholar 

  204. R. Munagala, F. Aqil, J. Jeyabalan, R.C. Gupta, Bovine milk-derived exosomes for drug delivery. Cancer Lett. 371, 48–61 (2016)

    Article  PubMed  CAS  Google Scholar 

  205. S.C. Jang, O.Y. Kim, C.M. Yoon, D.S. Choi, T.Y. Roh, J. Park, J. Nilsson, J. Lotvall, Y.K. Kim, Y.S. Gho, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7, 7698–7710 (2013)

    Article  PubMed  CAS  Google Scholar 

  206. K. O'Brien, M.C. Lowry, C. Corcoran, V.G. Martinez, M. Daly, S. Rani, W.M. Gallagher, M.W. Radomski, R.A. MacLeod, L. O'Driscoll, miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 6, 32774–32789 (2015)

    PubMed  PubMed Central  Google Scholar 

  207. S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa, N. Matsuyama, K. Fujita, T. Mizutani, T. Ohgi, T. Ochiya, N. Gotoh, M. Kuroda, Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013)

    Article  PubMed  CAS  Google Scholar 

  208. K.A. Greco, C.A. Franzen, K.E. Foreman, R.C. Flanigan, P.C. Kuo, G.N. Gupta, PLK-1 silencing in bladder cancer by sirna delivered with exosomes. Urology 91, e241–e247 (2016)

    Article  Google Scholar 

  209. J.L. Munoz, S.A. Bliss, S.J. Greco, S.H. Ramkissoon, K.L. Ligon, P. Rameshwar, Delivery of functional anti-mir-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2, e126 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. H. Qi, C. Liu, L. Long, Y. Ren, S. Zhang, X. Chang, X. Qian, H. Jia, J. Zhao, J. Sun, X. Hou, X. Yuan, C. Kang, Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 10, 3323–3333 (2016)

    Article  PubMed  CAS  Google Scholar 

  211. Y. Tian, S. Li, J. Song, T. Ji, M. Zhu, G.J. Anderson, J. Wei, G. Nie, A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383–2390 (2014)

    Article  PubMed  CAS  Google Scholar 

  212. T. Yang, P. Martin, B. Fogarty, A. Brown, K. Schurman, R. Phipps, V.P. Yin, P. Lockman, S. Bai, Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 32, 2003–2014 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. C.S. Hong, L. Muller, M. Boyiadzis, T.L. Whiteside, Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One 9, e103310 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  214. C.J. Beckham, J. Olsen, P.N. Yin, C.H. Wu, H.J. Ting, F.K. Hagen, E. Scosyrev, E.M. Messing, Y.F. Lee, Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J. Urol. 192, 583–592 (2014)

    Article  PubMed  CAS  Google Scholar 

  215. C. Berrondo, J. Flax, V. Kucherov, A. Siebert, T. Osinski, A. Rosenberg, C. Fucile, S. Richheimer, C.J. Beckham, Expression of the long non-coding rna hotair correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11, e0147236 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. C. Eichelser, I. Stuckrath, V. Muller, K. Milde-Langosch, H. Wikman, K. Pantel, H. Schwarzenbach, Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5, 9650–9663 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  217. S. Khan, H.F. Bennit, D. Turay, M. Perez, S. Mirshahidi, Y. Yuan, N.R. Wall, Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14, 176 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  218. I. Vardaki, S. Ceder, D. Rutishauser, G. Baltatzis, T. Foukakis, T. Panaretakis, Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 7, 74966–74978 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  219. J. Liu, H. Sun, X. Wang, Q. Yu, S. Li, X. Yu, W. Gong, Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int. J. Mol. Sci. 15, 758–773 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. T. Matsumura, K. Sugimachi, H. Iinuma, Y. Takahashi, J. Kurashige, G. Sawada, M. Ueda, R. Uchi, H. Ueo, Y. Takano, Y. Shinden, H. Eguchi, H. Yamamoto, Y. Doki, M. Mori, T. Ochiya, K. Mimori, Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 113, 275–281 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. H. Ogata-Kawata, M. Izumiya, D. Kurioka, Y. Honma, Y. Yamada, K. Furuta, T. Gunji, H. Ohta, H. Okamoto, H. Sonoda, M. Watanabe, H. Nakagama, J. Yokota, T. Kohno, N. Tsuchiya, Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9, e92921 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Q. Li, Y. Shao, X. Zhang, T. Zheng, M. Miao, L. Qin, B. Wang, G. Ye, B. Xiao, J. Guo, Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 36, 2007–2012 (2015)

    Article  PubMed  CAS  Google Scholar 

  223. H. Wang, L. Hou, A. Li, Y. Duan, H. Gao, X. Song, Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed. Res. Int. 2014, 864894 (2014)

    PubMed  PubMed Central  Google Scholar 

  224. K. Sugimachi, T. Matsumura, H. Hirata, R. Uchi, M. Ueda, H. Ueo, Y. Shinden, T. Iguchi, H. Eguchi, K. Shirabe, T. Ochiya, Y. Maehara, K. Mimori, Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 112, 532–538 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. J. Wang, Y. Zhou, J. Lu, Y. Sun, H. Xiao, M. Liu, L. Tian, Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 31, 148 (2014)

    Article  PubMed  CAS  Google Scholar 

  226. M. Guan, X. Chen, Y. Ma, L. Tang, L. Guan, X. Ren, B. Yu, W. Zhang, B. Su, MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol. 36, 2973–2982 (2015)

    Article  PubMed  CAS  Google Scholar 

  227. E. Alegre, M.F. Sanmamed, C. Rodriguez, O. Carranza, S. Martin-Algarra, A. Gonzalez, Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch. Pathol. Lab. Med. 138, 828–832 (2014)

    Article  PubMed  CAS  Google Scholar 

  228. J. Klibi, T. Niki, A. Riedel, C. Pioche-Durieu, S. Souquere, E. Rubinstein, S. Le Moulec, J. Guigay, M. Hirashima, F. Guemira, D. Adhikary, J. Mautner, P. Busson, Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966 (2009)

    Article  PubMed  CAS  Google Scholar 

  229. Y. Li, Y. Zhang, F. Qiu, Z. Qiu, Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32, 1976–1983 (2011)

    Article  PubMed  CAS  Google Scholar 

  230. Y. Tanaka, H. Kamohara, K. Kinoshita, J. Kurashige, T. Ishimoto, M. Iwatsuki, M. Watanabe, H. Baba, Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159–1167 (2013)

    Article  PubMed  CAS  Google Scholar 

  231. D.D. Taylor and C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)

  232. X. Ying, Q. Wu, X. Wu, Q. Zhu, X. Wang, L. Jiang, X. Chen and X. Wang, Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 7, 43076–43087 (2016)

  233. C. Kahlert, S.A. Melo, A. Protopopov, J. Tang, S. Seth, M. Koch, J. Zhang, J. Weitz, L. Chin, A. Futreal, R. Kalluri, Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. P.J. Mitchell, J. Welton, J. Staffurth, J. Court, M.D. Mason, Z. Tabi, A. Clayton, Can urinary exosomes act as treatment response markers in prostate cancer? J. Transl. Med. 7, 4 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. T. Kato, K. Mizutani, K. Kameyama, K. Kawakami, Y. Fujita, K. Nakane, Y. Kanimoto, H. Ehara, H. Ito, M. Seishima, T. Deguchi, M. Ito, Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol. Oncol. 33, e315–e320 (2015)

    Article  CAS  Google Scholar 

  237. X. Huang, T. Yuan, M. Liang, M. Du, S. Xia, R. Dittmar, D. Wang, W. See, B.A. Costello, F. Quevedo, W. Tan, D. Nandy, G.H. Bevan, S. Longenbach, Z. Sun, Y. Lu, T. Wang, S.N. Thibodeau, L. Boardman, M. Kohli, L. Wang, Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 67, 33–41 (2015)

    Article  PubMed  CAS  Google Scholar 

  238. James Graham Brown Cancer Center. Phase I clinical trial investigating the ability of plant exosomes to deliver curcumin to normal and malignant colon tissue. http://clinicaltrials.gov/show/NCT01294072. Accessed 16 September 2016

  239. James Graham Brown Cancer Center. preliminary clinical trial investigating the ability of plant exosomes to abrogate oral mucositis induced by combined chemotherapy and radiation in head and neck cancer patients. http://clinicaltrials.gov/show/NCT01668849. Accessed 16 September 2016

  240. B. Besse, M. Charrier, V. Lapierre, E. Dansin, O. Lantz, D. Planchard, T. Le Chevalier, A. Livartoski, F. Barlesi, A. Laplanche, S. Ploix, N. Vimond, I. Peguillet, C. Thery, L. Lacroix, I. Zoernig, K. Dhodapkar, M. Dhodapkar, S. Viaud, J.C. Soria, K.S. Reiners, E. Pogge von Strandmann, F. Vely, S. Rusakiewicz, A. Eggermont, J.M. Pitt, L. Zitvogel, N. Chaput, Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016)

    Article  PubMed  CAS  Google Scholar 

  241. S. Viaud, M. Terme, C. Flament, J. Taieb, F. Andre, S. Novault, B. Escudier, C. Robert, S. Caillat-Zucman, T. Tursz, L. Zitvogel, N. Chaput, Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 4, e4942 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. B. Escudier, T. Dorval, N. Chaput, F. Andre, M.P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, L. Zitvogel, Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl. Med. 3, 10 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Exosome Diagnostics, Inc. Clinical validation of a urinary exosome gene signature in men presenting for suspicion of prostate cancer. http://www.clinicaltrials.gov/show/NCT02702856. Accessed 16 September 2016

  244. Hospital Miguel Servet. Circulating exosomes as potential prognostic and predictive biomarkers in advanced gastric cancer patients. http://www.clinicaltrials.gov/show/NCT01779583. Accessed 16 September 2016

  245. New Mexico Cancer Care Alliance. An observational, single-institution pilot/feasibility study of exosome testing as a screening modality for human papillomavirus-positive oropharyngeal squamous cell carcinoma. http://clinicaltrials.gov/show/NCT02147418. Accessed 16 September 2016

  246. Centre Georges Francois Leclerc. Pilot study with the aim to quantify a stress protein in the blood and in the urine for early diagnosis of malgnant solid tumors. http://clinicaltrials.gov/show/NCT02662621. Accessed 16 September 2016

  247. National Taiwan University Hospital. Anaplastic thyroid cancer and follicular thyroid cancer-derived exosomal analysis via treatment of lovastatin and vildagliptin and pilot prognostic study via urine exosomal biological markers in thyroid cancer patients. http://clinicaltrials.gov/show/NCT02862470. Accessed 16 September 2016

  248. Thomas Jefferson University. Phase 1 study in humans evaluating the safety of rectus sheath implantation of diffusion chambers encapsulating autologous malignant glioma cells treated with insulin-like growth factor receptor-1 antisense oligodeoxynucleotide in 12 patients with recurrent malignant glioma. http://www.clinicaltrials.gov/show/NCT01550523. Accessed 16 September 2016

  249. Thomas Jefferson University. Phase I study in humans evaluating the safety of rectus sheath implantation of diffusion chambers encapsulating autologous malignant glioma cells treated with insulin-like growth factor receptor-1 antisense oligodeoxynucleotide (igf-1r/as odn) in 32 patients with newly diagnosed malignant glioma. http://clinicaltrials.gov/show/NCT02507583. Accessed 16 September 2016

  250. S. Dai, D. Wei, Z. Wu, X. Zhou, X. Wei, H. Huang, G. Li, I. Phase, clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008)

    Article  PubMed  CAS  Google Scholar 

  251. Centre Hospitalier Universitaire de Nice. Pilot study of exosomes before and after braf inhibitor therapy in patients with advanced unresectable or metastatic braf mutation-positive melanoma. http://www.clinicaltrials.gov/show/NCT02310451. Accessed 16 September 2016

  252. Midwest Biomedical Research Foundation. Evaluation of microrna expression in blood and cytology specimens as a novel method for detecting barrett's esophagus. http://www.clinicaltrials.gov/show/NCT02464930. Accessed 16 September 2016

  253. Xinqiao Hospital of Chongqing. Clinical research for the consistency analysis of pd-l1 in cancer tissue and plasma exosome. http://www.clinicaltrials.gov/show/NCT02890849. Accessed 16 September 2016

  254. Xinqiao Hospital of Chongqing. Clinical research for the consistency analysis of pd-l1 in lung cancer tissue and plasma exosome before and after radiotherapy. http://www.clinicaltrials.gov/show/NCT02869685. Accessed 16 September 2016

  255. Memorial Sloan Kettering Cancer Center. Interrogation of exosome-mediated intercellular signaling in patients with pancreatic cancer. http://www.clinicaltrials.gov/show/NCT02393703. Accessed 16 September 2016

  256. Centre Oscar Lambret. Early biomarkers of tumor response in high dose hypofractionated radiotherapy word package 3: immune response. http://clinicaltrials.gov/show/NCT02439008. Accessed 16 September 2016

Download references

Acknowledgements

This work was supported by University of Malaya Programme Grant RP032-14HTM. The authors would like to thank Miss Yew Hong Wen, from Stem Cell Biology Laboratory, for her assistance in preparing the artwork and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thamil Selvee Ramasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundararajan, V., Sarkar, F.H. & Ramasamy, T.S. The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications. Cell Oncol. 41, 223–252 (2018). https://doi.org/10.1007/s13402-018-0378-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0378-4

Keywords

Navigation