Skip to main content

Advertisement

Log in

Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein

  • Research Article
  • Published:
Tumor Biology

Abstract

Acquired drug resistance is a major obstacle to chemotherapy of cancers. In this study, we aim to investigate the role of exosomes in drug-resistance transfer between breast cancer cells and detect the probable mechanism. A docetaxel-resistant variant of MCF-7 cell line (MCF-7/DOC) was established and then compared with the drug-sensitive variant (MCF-7/S). Exosomes were expelled from the cell supernatant using ultracentrifugation. Drug resistance was assessed by apoptosis assay and MTT examination. Expressions of P-glycoprotein (P-gp) were analyzed by flow cytometry. Stained exosomes were absorbed by receipt cells. MCF-7/S in the presence of exosomes extracted from the supernatant of MCF-7/DOC (DOC/exo) acquired drug resistance, while MCF-7/S exposed to their own exosomes (S/exo) did not. P-gp expression patterns of exosomes were similar as the originated cells. P-gp expression of MCF-7/S increased after incubation with DOC/exo and was affected by the amount of exosomes. Exosomes are effective in transferring drug resistance as well as P-gp from drug-resistant breast cancer cells to sensitive ones. The delivery of P-gp via exosomes may be a mechanism of exosome-mediated drug resistance transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol. 2014. doi:10.1016/j.jtbi.2014.02.025.

    Google Scholar 

  2. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27. doi:10.1146/annurev.med.53.082901.103929.

    Article  CAS  PubMed  Google Scholar 

  3. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42. doi:10.1007/s10555-013-9441-9.

    Article  CAS  PubMed  Google Scholar 

  4. Chen WX, Zhong SL, Ji MH, Pan M, Hu Q, Lv MM, et al. MicroRNAs delivered by extracellular vesicles: an emerging resistance mechanism for breast cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2013. doi:10.1007/s13277-013-1417-4.

    Google Scholar 

  5. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. doi:10.1124/pr.112.005983.

    Article  PubMed  Google Scholar 

  6. Yang X, Weng Z, Mendrick DL, Shi Q. Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol Lett. 2014;225(3):401–6. doi:10.1016/j.toxlet.2014.01.013.

    Article  CAS  PubMed  Google Scholar 

  7. van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2013;65(3):331–5. doi:10.1016/j.addr.2012.06.011.

    Article  PubMed  Google Scholar 

  8. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8. doi:10.1016/j.bbagen.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  9. Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia. 2009;23(9):1643–9. doi:10.1038/leu.2009.76.

    Article  CAS  PubMed  Google Scholar 

  10. Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, et al. Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem. 2012;287(10):7374–87. doi:10.1074/jbc.M111.312157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK. Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des. 2013;19(40):7126–40.

    Article  CAS  PubMed  Google Scholar 

  12. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22(47):7468–85. doi:10.1038/sj.onc.1206948.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica; the fate of foreign compounds in biological systems. 2008;38(7-8):802–32. doi:10.1080/00498250701867889.

  14. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531(1):8–14. doi:10.1016/j.gene.2013.08.062.

    Article  CAS  PubMed  Google Scholar 

  15. Lasser C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. J Visualized Exp JoVE. 2012;59:e3037. doi:10.3791/3037.

    Google Scholar 

  16. Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999. doi:10.1371/journal.pone.0050999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. doi:10.1002/pmic.200900351.

    Article  CAS  PubMed  Google Scholar 

  18. Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 2013;14(7):14240–69. doi:10.3390/ijms140714240.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. doi:10.1038/ncb1800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011;11:108. doi:10.1186/1471-2407-11-108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009;278(1):73–81. doi:10.1016/j.canlet.2008.12.028.

    Article  CAS  PubMed  Google Scholar 

  22. Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev. 2013;65(3):383–90. doi:10.1016/j.addr.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  23. Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–11. doi:10.1016/j.bbcan.2012.03.006.

    CAS  PubMed  Google Scholar 

  24. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. doi:10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  25. Pasquier J, Magal P, Boulange-Lecomte C, Webb G, Le Foll F. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biol Direct. 2011;6:5. doi:10.1186/1745-6150-6-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005;102(6):1933–8. doi:10.1073/pnas.0401851102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi:10.1038/nrg1379.

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. doi:10.1073/pnas.0804549105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology (Baltimore, Md). 2011;54(4):1237–48. doi:10.1002/hep.24504.

    Article  CAS  Google Scholar 

  30. Chen W-x, Liu X-m, Lv M-m, Chen L, Zhao J-h, Zhong S-l, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One. 2014;9(4):e95240.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-hai Tang or Jian-hua Zhao.

Additional information

Meng-meng Lv and Xingya Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Mm., Zhu, Xy., Chen, Wx. et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol. 35, 10773–10779 (2014). https://doi.org/10.1007/s13277-014-2377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2377-z

Keywords

Navigation