Skip to main content

Advertisement

Log in

Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease?

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV infection in the combination antiretroviral therapy (cART) era has become a chronic disease with a life expectancy almost identical to those free from this infection. Concomitantly, chronic diseases such as neurodegenerative diseases have emerged as serious clinical problems. HIV-induced cognitive changes, although clinically very diverse are collectively called HIV-associated neurocognitive disorder (HAND). HAND, which until the introduction of cART manifested clinically as a subcortical disorder, is now considered primarily cognitive disorder, which makes it similar to diseases like Alzheimer’s (AD) and Parkinson’s disease (PD). The pathogenesis involves either the direct effects of the virus or the effect of viral proteins such as Tat, Ggp120, and Nef. These proteins are either capable of destroying neurons directly by inducing neurotoxic mediators or by initiating neuroinflammation by microglia and astrocytes. Recently, it has become recognized that HIV infection is associated with increased production of the beta-amyloid peptide (Aβ) which is a characteristic of AD. Moreover, amyloid plaques have also been demonstrated in the brains of patients suffering from HAND. Thus, the question arises whether this production of Aβ indicates that HAND may lead to AD or it is a form of AD or this increase in Aβ production is only a bystander effect. It has also been discovered that APP in HIV and its metabolic product Aβ in AD manifest antiviral innate immune peptide characteristics. This review attempts to bring together studies linking amyloid precursor protein (APP) and Aβ production in HIV infection and their possible impact on the course of HAND and AD. These data indicate that human defense mechanisms in HAND and AD are trying to contain microorganisms by antimicrobial peptides, however by employing different means. Future studies will, no doubt, uncover the relationship between HAND and AD and, hopefully, reveal novel treatment possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research Center (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J NeuroImmune Pharmacol 4:190–199. https://doi.org/10.1007/s11481-009-9152-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475:174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzheimer’s Association (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13:325–373. https://doi.org/10.1016/j.jalz.2017.02.001

    Article  Google Scholar 

  • Amar F, Sherman MA, Rush T, Larson M, Boyle G, Chang L, Götz J, Buisson A, Lesné SE (2017) The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal 10(478). https://doi.org/10.1126/scisignal.aal2021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, Aldea P, Fagan AM, Holtzman DM, Morris JC, Clifford DB (2012) 11C-PiB imaging of human immunodeficiency virus associated neurocognitive disorder. Arch Neurol 69:72–77. https://doi.org/10.1001/archneurol.2011.761

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson AM, Croteau D, Ellis RJ, Rosario D, Potter M, Guillemin GJ, Brew BJ, Woods SP, Letendre SL (2018a) HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J Neuroimmunol 319:13–18. https://doi.org/10.1016/j.jneuroim.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson M, Kashanchi F, Jacobson S (2018b) Role of exosomes in human retroviral mediated disorders. J NeuroImmune Pharmacol 13:279–291. https://doi.org/10.1007/s11481-018-9784-7

    Article  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Antonelli LR, Mahnke Y, Hodge JN, Porter BO, Barber DL, DerSimonian R, Greenwald JH, Roby G, Mican J, Sher A, Roederer M, Sereti I (2010) Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood 116:3818–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226

    Article  CAS  PubMed  Google Scholar 

  • Arendt G, Hefter H, Elsing C, Strohmeyer G, Freund HJ (1990) Motor dysfunction in HIV-infected patients without clinically detectable central-nervous deficit. J Neurol 237:362–368

    Article  CAS  PubMed  Google Scholar 

  • Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34:11485–11503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: indentification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  • Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gérard HC et al (2008) Chlamydophila pneumoniae and the etiology of late onset Alzheimer’s disease. J Alzheimers Dis 13:371–380. https://doi.org/10.3233/JAD2008-13403

    Article  CAS  PubMed  Google Scholar 

  • Bardi G, Sengupta R, Khan MZ, Patel JP, Meucci O (2006) Human immunodeficiency virus gp120-induced apoptosis of human neuroblastoma cells in the absence of CXCR4 internalization. J Neuro-Oncol 12:211–218

    CAS  Google Scholar 

  • Ben Haij N, Planès R, Leghmari K, Serrero M, Delobel P, Izopet J, BenMohamed L, Bahraoui E (2015) HIV-1 Tat protein induces production of proinflammatory cytokines by human dendritic cells and monocytes/macrophages through engagement of TLR4-MD2-CD14 complex and activation of NF-κB pathway. PLoS One 10:e0129425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beyreuther K, Masters CL (1991) Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol 1:241–251

    Article  CAS  PubMed  Google Scholar 

  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolós M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8:37–43

    Article  PubMed  CAS  Google Scholar 

  • Bonavia R, Bajetto A, Barbero S, Albini A, Noonan DM et al (2001) HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun 288:301–308

    Article  CAS  PubMed  Google Scholar 

  • Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T Jr (2015) β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16:85–98. https://doi.org/10.1007/s10522-014-9538-8

    Article  CAS  PubMed  Google Scholar 

  • Bourgade K, Dupuis G, Frost EH, Fülöp T (2016a) Anti-viral properties of amyloid-β peptides. J Alzheimers Dis 54:859–878

    Article  CAS  PubMed  Google Scholar 

  • Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T Jr (2016b) Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. J Alzheimers Dis 50:1227–1241. https://doi.org/10.3233/JAD-150652

    Article  CAS  PubMed  Google Scholar 

  • Brabers NA, Nottet HS (2006) Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Investig 36:447–458

    Article  CAS  Google Scholar 

  • Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P, Guillemin GJ (2012) Recent rodent models for Alzheimer’s disease: clinical implications and basic research. J Neural Transm 119:173–195. https://doi.org/10.1007/s00702-011-0731-5

    Article  CAS  PubMed  Google Scholar 

  • Bruno AP, De Simone FI, Iorio V, De Marco M, Khalili K, Sariyer IK, Capunzo M, Nori SL, Rosati A (2014) HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels. Cell Cycle 13:3640–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budka H (1986) Multinucleated giant cells in brain, a hallmark of the acquired immundeficiency syndrom (AIDS). Acta Neuropathol 69:253–258

    Article  CAS  PubMed  Google Scholar 

  • Campbell GR, Rawat P, Bruckman RS, Spector SA (2015) Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog 11:1–24

    Article  CAS  Google Scholar 

  • Campion D, Pottier C, Nicolas G, Le Guennec K, Rovelet-Lecrux A (2016) Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 21:861–871

    Article  CAS  PubMed  Google Scholar 

  • Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S (2018) HIV Neuroinfection and Alzheimer’s disease: similarities and potential links? Front Cell Neurosci 12:307. https://doi.org/10.3389/fncel.2018.00307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso GL, Takei K, Gandy SE, Matteoli M, Mundigl O et al (1994) Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci 14:3122–3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catani MV, Corasaniti MT, Navarra M, Nisticò G, Finazzi-Agrò A, Melino G (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74:2373–2379

    Article  CAS  PubMed  Google Scholar 

  • Chai Q, Jovasevic V, Malikov V, Sabo Y, Morham S, Walsh D, Naghavi MH (2017) HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 8:1522. https://doi.org/10.1038/s41467-017-01795-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen NC, Partridge AT, Sell C, Torres C, Martín-García J (2017) Fate of microglia during HIV-1 infection: from activation to senescence? Glia 65:431–446. https://doi.org/10.1002/glia.23081

    Article  PubMed  Google Scholar 

  • Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuro Mol Med 12:1–12

    Article  CAS  Google Scholar 

  • Choy RW, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci U S A 109:E2077–E2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, Kauwe JS (2009) CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology 73:1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MA, Margolick JB, Cox C, Li X, Selnes OA, Martin EM, Becker JT, Aronow HA, Cohen B, Sacktor N, Miller EN (2007) Longitudinally preserved psychomotor performance in longterm asymptomatic HIV-infected individuals. Neurology 69:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W et al (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95:3117–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228. https://doi.org/10.1016/j.it.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  • Das S, Potter H (1995) Expression of the Alzheimer amyloidpromoting factors á 1-antichymotrypsin and apolipoprotein E is induced in astrocytes by IL-1. Neuron 14:447–456

    Article  CAS  PubMed  Google Scholar 

  • Daussy CF, Beaumelle B, Espert L (2015) Autophagy restricts HIV-1 infection. Oncotarget 6:20752–20753

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Autophagy in astrocytes: a novel culprit in lysosomal storage disorders. Autophagy 8:1871–1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolei A (2006) Endogenous retroviruses and human disease. Expert Rev Clin Immunol 2:149–167

    Article  CAS  PubMed  Google Scholar 

  • Dolei A, Uleri E, Ibba G, Caocci M, Piu C, Serra C (2015) The aliens inside human DNA: HERV-W/MSRV/syncytin-1 endogenous retroviruses and neurodegeneration. J Infect Dev Ctries 9:577–587. https://doi.org/10.3855/jidc.6916

    Article  CAS  PubMed  Google Scholar 

  • Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999) Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E, German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI) (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264:1715–1727. https://doi.org/10.1007/s00415-017-8503-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, Collier AC, Gelman B, McArthur J, Morgello S, McCutchan JA, Grant I (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R (2016) Expression pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for Alzheimer’s disease. J Alzheimers Dis 53:857–873

    Article  PubMed  CAS  Google Scholar 

  • Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherner M, Gelman B, Morgello S, Singer E, Grant I, Masliah E, National Neuro ATC (2009) Clinico neuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neuro-Oncol 15:360–370

    CAS  Google Scholar 

  • Festoff BW, Sajja RK, van Dreden P, Cucullo L (2016) HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease. J Neuroinflammation 13:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E (2015a) Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 13:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015b) HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35:1921–1938. https://doi.org/10.1523/JNEUROSCI.3207-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields JA, Metcalf J, Overk C, Adame A, Spencer B, Wrasidlo W, Florio J, Rockenstein E, He JJ, Masliah E (2017) The anticancer drug sunitinib promotes autophagyand protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration. J Neuro-Oncol 23:290–303. https://doi.org/10.1007/s13365-016-0502-z

    Article  CAS  Google Scholar 

  • Fülöp T, Herbein G, Cossarizza A, Witkowski JM, Frost E, Dupuis G, Pawelec G, Larbi A (2017) Cellular senescence, Immunosenescence and HIV. Interdiscip Top Gerontol Geriatr 42:28–46

    Article  PubMed  Google Scholar 

  • Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barro AE (2018a) Role of microbes in the development of Alzheimer’s disease: state of the art - an international symposium presented at the 2017 IAGG Congress in San Francisco. Front Genet 9:362. https://doi.org/10.3389/fgene.2018.00362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fülöp T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH (2018b) Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front Aging Neurosci 10:224. https://doi.org/10.3389/fnagi.2018.00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D’Arrigo C (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int J Biochem Cell Biol 44:2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ (2016) Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 30:591–600

    Article  CAS  PubMed  Google Scholar 

  • Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12:272–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, Fuchs D, Spudich S, Blennow K, Zetterberg H (2016) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. Ebiomedicine 3:135–140. https://doi.org/10.1016/j.ebiom.2015.11.036

    Article  PubMed  Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250(4987):1593–1596

    Article  CAS  PubMed  Google Scholar 

  • Giunta B, Zhou Y, Hou H, Rrapo E, Fernandez F, Tan J (2008) HIV-1 TAT inhibits microglial phagocytosis of Abeta peptide. Int J Clin Exp Pathol 1:260–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giunta B, Hou H, Zhu Y, Rrapo E, Tian J et al (2009) HIV-1 tat contributes to Alzheimer’s disease-like pathology in PSAPP mice. Int J Clin Exp Pathol 2:433–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giunta B, Ehrhart J, Obregon DF, Lam L, Le L, Jin J, Fernandez F, Tan J, Shytle RD (2011) Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4:23. https://doi.org/10.1186/1756-6606-4-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73:584–590

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Gendelman HE, Poluektova LY (2012a) Can humanized mice reflect the complex pathobiology of HIV-associated neurocognitive disorders? J NeuroImmune Pharmacol 7:352–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorantla S, Poluektova L, Gendelman HE (2012b) Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 35:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, Vesselingh SL, Purcell DFJ (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1:463–473

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell J, Lantos P (1996) Neuropathology of early HIV-1 infection. Brain Pathol 6(1):15

    Article  Google Scholar 

  • Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G, Moulignier A (2013) Encephalitis with infiltration by CD8+ lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol 23:525–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 278:31261–31268

    Article  CAS  PubMed  Google Scholar 

  • Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411

    Article  CAS  PubMed  Google Scholar 

  • Hachinski V (2019) Dementia: new vistas and opportunities. Neurol Sci. https://doi.org/10.1007/s10072-019-3714-1

    Article  PubMed  Google Scholar 

  • Harding A, Gonder U, Robinson SJ, Crean S, Singhrao SK (2017) Exploring the association between Alzheimer’s disease, oral health, microbial endocrinology and nutrition. Front Aging Neurosci 9:398. https://doi.org/10.3389/fnagi.2017.00398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A (2017) HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbein G (2016) TNF and HIV-1 Nef: an intimate interplay. EBioMedicine 13:25–26. https://doi.org/10.1016/j.ebiom.2016.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbein G, Khan KA (2008) Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol 29:61–67. https://doi.org/10.1016/j.it.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  • Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799

    Article  CAS  PubMed  Google Scholar 

  • Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12. https://doi.org/10.1016/j.bbi.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243–252

    Article  CAS  PubMed  Google Scholar 

  • Hunt PW (2014) HIV and aging: emerging research issues. Curr Opin HIV AIDS 9:302–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Itabashi S, Arai H, Matsui T, Higuchi S, Sasaki H (1997) Herpes simplex virus and risk of Alzheimer’sdisease. Lancet 349:1102. https://doi.org/10.3233/JAD-200813403

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 349:241–244. https://doi.org/10.1111/j.1750-3639.1991.tb00667.x

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici K, Field H, Fulop T, Grassi C, Griffin WS, Haas J, Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur L, Lövheim H, Mancuso R, Miklossy J, Otth C, Palamara AT, Perry G, Preston C, Pretorius E, Strandberg T, Tabet N, Taylor-Robinson SD, Whittum-Hudson JA (2016) Microbes and Alzheimer’s disease. J Alzheimers Dis 51:979–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496

    Article  PubMed  CAS  Google Scholar 

  • Joska JA, Gouse H, Paul RH, Stein DJ, Flisher AJ (2010) Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol 16:101–114

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon JH, Kim YS (2013) HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8:e77972. https://doi.org/10.1371/journal.pone.0077972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV Tat and neurotoxicity. Microbes Infect 8:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    CAS  PubMed  Google Scholar 

  • Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    Article  PubMed  CAS  Google Scholar 

  • Krogh KA, Green MV, Thayer SA (2014) HIV-1 Tat-induced changes in synaptically-driven network activity adapt during prolonged exposure. Curr HIV Res 12:406–414

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Abbas W, Bouchat S, Gatot JS, Pasquereau S, Kabeya K, Clumeck N, De Wit S, Van Lint C, Herbein G (2016) Limited HIV-1 reactivation in resting CD4+ T cells from aviremic patients under protease inhibitors. Sci Rep 6:38313. https://doi.org/10.1038/srep38313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers SL, Fogel GB, Liu ES, Barbier AE, Rodriguez CW, Singer EJ, Nolan DJ, Rose R, McGrath MS (2018) Brain-specific HIV Nef identified in multiple patients with neurological disease. J Neuro-Oncol 24:1–15

    CAS  Google Scholar 

  • Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM, Fulop T (2018) Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol 107:59–66. https://doi.org/10.1016/j.exger.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  • Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JC, Au K, Fang J, Yim HC, Chow K, Ho P, Lau AS (2011) HIV-1 trans-activator protein dysregulates IFN-signaling and contributes to the suppression of autophagy induction. AIDS 25:15–25

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Kumar A (2015) Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes. Sci Rep 5:9867

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Yu J, Li L, Zhang B, Liu L, Wu CH, Jong A, Mao DA, Huang SH (2017) Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by glycoprotein 120, methamphetamine and nicotine. Sci Rep 7:40467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse N, Obel N (2016) Update of survival for persons with HIV infection in Denmark. Ann Intern Med 165:749–750

    Article  PubMed  Google Scholar 

  • Łopatniuk P, Witkowski JM (2011) Conventional calpains and programmed cell death. Acta Biochim Pol 58:287–296

    Article  PubMed  Google Scholar 

  • Ludewig S, Korte M (2017) Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci 9:161. https://doi.org/10.3389/fnmol.2016.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C (2016) Targeting the brain reservoirs: toward an HIV cure. Front Immunol 7:397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeker RB, Poulton W, Clary G, Schriver M, Longo FM (2016) Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis. Exp Neurol 275:182–198

    Article  CAS  PubMed  Google Scholar 

  • Mentis AA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM (2017) Viruses and endogenous retroviruses in multiple sclerosis: from correlation to causation. Acta Neurol Scand 136:606–616. https://doi.org/10.1111/ane.12775

    Article  PubMed  Google Scholar 

  • Miklossy J (1993) Alzheimer’s disease–a spirochetosis? Neuroreport 4:841–848

    Article  CAS  PubMed  Google Scholar 

  • Milanini B, Valcour V (2017) Differentiating HIV-associated neurocognitive disorders from Alzheimer’s disease: an emerging issue in geriatric neuroHIV. Curr HIV/AIDS Rep 14:123–132. https://doi.org/10.1007/s11904-017-0361-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Singh SK (2013) HIV-1 Tat C modulates expression of miRNA-101 to suppress VE-cadherin in human brain microvascular endothelial cells. J Neurosci 33:5992–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missé D, Gajardo J, Oblet C, Religa A, Riquet N, Mathieu D, Yssel H, Veas F (2005) Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell signaling and Tat cofactor overexpression. AIDS 19:897–905

    Article  PubMed  Google Scholar 

  • Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2018.06.3040

    Article  Google Scholar 

  • Mordelet E, Kissa K, Cressant A, Gray F, Ozden S, Vidal C, Charneau P, Granon S (2004) Histopathological and cognitive defects induced by Nef in the brain. FASEB J 18:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250

    Article  PubMed  CAS  Google Scholar 

  • Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198

    Article  CAS  PubMed  Google Scholar 

  • Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524

    Article  CAS  PubMed  Google Scholar 

  • Neuen-Jacob E (2009) Neurotransmitter effects in human immunodeficiency virus (HIV) and simian immuno-deficiency virus (SIV) infection. AntiInflamm Antiallergy Agents Med Chem 8:153–163

    Article  CAS  Google Scholar 

  • Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18:489–496

    Article  CAS  PubMed  Google Scholar 

  • Nookala AR, Kumar A (2014) Molecular mechanisms involved in HIV-1 Tat-mediated induction of IL-6 and IL-8 in astrocytes. J Neuroinflammation 11:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A (2017) An overview of human immunodeficiency virus type 1-associated common neurological complications: does aging pose a challenge? J Alzheimers Dis 60:S169–S193. https://doi.org/10.3233/JAD-170473

    Article  PubMed  PubMed Central  Google Scholar 

  • Noorali S, Rotar IC, Lewis C, Pestaner JP, Pace DG, Sison A, Bagasra O (2009) Role of HERV-W syncytin-1 in placentation and maintenance of human pregnancy. Appl Immunohistochem Mol Morphol 17:319–328. https://doi.org/10.1097/PAI.0b013e31819640f9

    Article  CAS  PubMed  Google Scholar 

  • Nottet HS (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood - brain barrier function. J Neuro-Oncol 5:659–669

    CAS  Google Scholar 

  • Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N (2017) Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: new insights for diagnosis and therapeutic applications. Viruses 9. https://doi.org/10.3390/v9070176

    Article  PubMed Central  CAS  Google Scholar 

  • Ortega M, Ances BM (2014) Role of HIV in amyloid metabolism. J NeuroImmune Pharmacol 9:483–491. https://doi.org/10.1007/s11481-014-9546-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostalecki C, Wittki S, Lee JH, Geist MM, Tibroni N, Harrer T, Schuler G, Fackler OT, Baur AS (2016) HIV Nef- and Notch1-dependent endocytosis of ADAM17 induces vesicular TNF secretion in chronic HIV infection. EBioMedicine 13:294–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquereau S, Kumar A, Herbein G (2017) Targeting TNF and TNF receptor pathway in HIV-1 infection: from immune activation to viral reservoirs. Viruses 9

    Article  PubMed Central  CAS  Google Scholar 

  • Petrik J (2016) Immunomodulatory effects of exosomes produced by virus-infected cells. Transfus Apher Sci 55:84–91. https://doi.org/10.1016/j.transci.2016.07.014

    Article  PubMed  Google Scholar 

  • Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neuro-Oncol. https://doi.org/10.1007/s13365-018-0695-4

  • Rahimian P, He JJ (2016) Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein. J Neuro-Oncol 22:774–788

    CAS  Google Scholar 

  • Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, Schwille P, Schulz JB, Schroeder C, Simons M, Jennings G, Knolker HJ, Simons K (2008) Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science 320:520–523

    Article  CAS  PubMed  Google Scholar 

  • Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ricciarelli R, Fedele E (2017) The amyloid cascade hypothesis in Alzheimer’s disease: It's time to change our mind. Curr Neuropharmacol 15:926–935. https://doi.org/10.2174/1570159X15666170116143743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J (2019) Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission. Science 363(6423). https://doi.org/10.1126/science.aao4827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  CAS  PubMed  Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921

    Article  PubMed  Google Scholar 

  • Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32(4):723–733. https://doi.org/10.1007/s12640-017-9776-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM (2018) Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS 32:1661–1667. https://doi.org/10.1097/QAD.0000000000001858

    Article  PubMed  Google Scholar 

  • Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK (2017) HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 8:e2542. https://doi.org/10.1038/cddis.2016.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Jia J (2016) An overview of genome-wide association studies in Alzheimer’s disease. Neurosci Bull 32:183–190. https://doi.org/10.1007/s12264-016-0011-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel G, Gerber H, Koch P, Bruestle O, Fraering PC, Rajendran L (2017) The Alzheimer’s disease γ-secretase generates higher 42:40 ratios for β-amyloid than for p3 peptides. Cell Rep 19:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Siliciano JD, Siliciano RF (2016) Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 126:409–414. https://doi.org/10.1172/JCI86047

    Article  PubMed  PubMed Central  Google Scholar 

  • Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 89(13):6075–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soliman ML, Geiger JD, Chen X (2017) Caffeine blocks HIV-1 Tat-induced amyloid beta production and Tau phosphorylation. J NeuroImmune Pharmacol 12:163–170. https://doi.org/10.1007/s11481-016-9707-4

    Article  PubMed  Google Scholar 

  • Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, Masliah E, Levine AJ, Singer EJ, Vinters HV, Gelman BB, Morgello S, Cherner M, Grant I, Achim CL (2012) AIDS 26:2327–2335. https://doi.org/10.1097/QAD.0b013e32835a117c

    Article  CAS  PubMed  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease- associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, Reichelt D, Lohmann H, Husstedt IW (2013) Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 20:420–428. https://doi.org/10.1111/ene.12006

    Article  CAS  PubMed  Google Scholar 

  • Su F, Bai F, Zhou H, Zhang Z (2016a) Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun 52:187–198

    Article  CAS  PubMed  Google Scholar 

  • Su T, Wit FW, Caan MW, Schouten J, Prins M, Geurtsen GJ, Cole JH, Sharp DJ, Richard E, Reneman L, Portegies P, Reiss P, Majoie CB, Study AGC (2016b) White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS 30:2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Chen WD, Wang YD (2015) β-amyloid: the keypeptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221

    PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 4:133–150. https://doi.org/10.1038/nrneurol.2017

    Article  Google Scholar 

  • Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39:286–298

    Article  PubMed  Google Scholar 

  • Tate BA, Mathews PM (2006) Targeting the role of the endosome in the pathophysiology of Alzheimer’s disease: a strategy for treatment. Sci Aging Knowl Environ 2006:re2

    Article  Google Scholar 

  • Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, Buch S (2018) HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14:1596–1619. https://doi.org/10.1080/15548627.2018.1476810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Mayer L, Sperber K (2009) Mitochondria influence Fas expression in gp120-induced apoptosis of neuronal cells. Int J Neurosci 119:157–165

    Article  CAS  PubMed  Google Scholar 

  • Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G (2016) An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement (Amst) 4:1–5. https://doi.org/10.1016/j.dadm.2016.03.009

    Article  Google Scholar 

  • Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM (2018) Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol. https://doi.org/10.1002/jcp.27588

    Article  PubMed  CAS  Google Scholar 

  • Uleri E, Mei A, Mameli G, Poddighe L, Serra C, Dolei A (2014) HIV Tat acts on endogenous retroviruses of the W family and this occurs via toll-like receptor 4: inference for neuroAIDS. AIDS 28:2659–2670

    Article  CAS  PubMed  Google Scholar 

  • van der Kant R, Goldstein LS (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502–515

    Article  PubMed  CAS  Google Scholar 

  • Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IRA, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2:a006866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkins HM, Swerdlow RH (2017) Amyloid precursor protein processing and bioenergetics. Brain Res Bull 133:71–79

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19

    Article  CAS  PubMed  Google Scholar 

  • Yap SH, Abdullah NK, McStea M, Takayama K, Chong ML, Crisci E, Larsson M, Azwa I, Kamarulzaman A, Leong KH, Woo YL, Rajasuriar R.(2017) HIV/Human herpesvirus co-infections: Impact on tryptophan-kynurenine pathway and immune reconstitution PLoS One 12e0186000. https://doi.org/10.1371/journal.pone.0186000. eCollection 2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeinolabediny Y, Caccuri F, Colombo L, Morelli F, Romeo M, Rossi A, Schiarea S, Ciaramelli C, Airoldi C, Weston R, Donghui L, Krupinski J, Corpas R, García-Lara E, Sarroca S, Sanfeliu C, Slevin M, Caruso A, Salmona M, Diomede L (2017) HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep 7:10313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Liu J, Katafiasz B, Fox H, Xiong H (2011) HIV-1 gp120-induced axonal injury detected by accumulation of β-amyloid precursor protein in adult rat corpus callosum. J NeuroImmune Pharmacol 6:650–657. https://doi.org/10.1007/s11481-011-9259-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR) (No. 106634), the Société des médecins de l’Université de Sherbrooke and the Research Center on Aging of the CIUSSS-CHUS, Sherbrooke and the FRQS Audace grant to TF and EF; by the Polish Ministry of Science and Higher Education statutory grant 02-0058/07/262 to JMW; by Agency for Science Technology and Research (A*STAR) to AL and GH was supported by a grant from the Université de Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Fulop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulop, T., Witkowski, J.M., Larbi, A. et al. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease?. J. Neurovirol. 25, 634–647 (2019). https://doi.org/10.1007/s13365-019-00732-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-019-00732-3

Keywords

Navigation