Skip to main content

Advertisement

Log in

Can Humanized Mice Reflect the Complex Pathobiology of HIV-Associated Neurocognitive Disorders?

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

There is a rebirth of humanized mouse models in reflecting human immunodeficiency virus (HIV) pathobiology. This has allowed new investigations of viral diversity, immunity and developmental therapeutics. In the past, HIV infection and disease were, in part, mirrored in immune deficient mice reconstituted with human hematopoietic stem cells. What remained from early studies reflected the ability to mirror central nervous system (CNS) disease. As the wide spread use of combination antiretroviral therapies has changed the severity, but not prevalence, of HIV-associated neurocognitive disorders (HAND), mimicking such virus-induced CNS morbidities in humanized animals is essential for HIV/AIDS research activities. To this end, we now review the evidence for how and under what circumstances humanized mice may be utilized for studies of HIV-1 neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abayomi OK (1996) Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol 35:659–663

    Article  PubMed  CAS  Google Scholar 

  • Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J, Connick E, Folkvord J, Gagliardi K, Kassu A, Akkina SR (2011) Humanized Rag1-/- gammac-/- mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS One 6:e20169

    Article  PubMed  CAS  Google Scholar 

  • An D, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H, Chen I, Uittenbogaart C (2007) Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14:391–396

    Google Scholar 

  • Andre MC, Erbacher A, Gille C, Schmauke V, Goecke B, Hohberger A, Mang P, Wilhelm A, Mueller I, Herr W, Lang P, Handgretinger R, Hartwig UF (2010) Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R gamma(null) mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells. J Immunol 185:2710–2720

    Article  PubMed  CAS  Google Scholar 

  • Asheuer M, Pflumio F, Benhamida S, Dubart-Kupperschmitt A, Fouquet F, Imai Y, Aubourg P, Cartier N (2004) Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc Natl Acad Sci U S A 101:3557–3562

    Article  PubMed  CAS  Google Scholar 

  • Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG, Speck RF (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A 103:15951–15956

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J, De Clercq E, Uberla K (1997) SIV/HIV-1 hybrid virus expressing the reverse transcriptase gene of HIV-1 remains sensitive to HIV-1-specific reverse transcriptase inhibitors after passage in rhesus macaques. J Acquir Immune Defic Syndr Hum Retrovirol 15:1–4

    Google Scholar 

  • Baxter AG, Cooke A (1993) Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 42:1574–1578

    Article  PubMed  CAS  Google Scholar 

  • Berges B, Rowan M (2011) The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8:65

    Article  PubMed  CAS  Google Scholar 

  • Berges B, Wheat W, Palmer B, Connick E, Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 3:76

    Google Scholar 

  • Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A (2011) Development of human CD4 + FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 117:3076–3086

    Article  PubMed  CAS  Google Scholar 

  • Boska MD, Mosley RL, Nawab M, Nelson JA, Zelivyanskaya M, Poluektova L, Uberti M, Dou H, Lewis TB, Gendelman HE (2004) Advances in neuroimaging for HIV-1 associated neurological dysfunction: clues to the diagnosis, pathogenesis and therapeutic monitoring. Curr HIV Res 2:61–78

    Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  PubMed  CAS  Google Scholar 

  • Bosma G, Davisson M, Ruetsch N, Sweet H, Shultz L, Bosma M (1989) The mouse mutation severe combined immune deficiency (scid) is on chromosome 16. Immunogenetics 29:54–57

    Article  PubMed  CAS  Google Scholar 

  • Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, Shin HS, Brooks SF, Knight HL, Eichbaum Q, Yang YG, Sykes M, Walker BD, Freeman GJ, Pillai S, Westmoreland SV, Brander C, Luster AD, Tager AM (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in HIV-infected humanized BLT mice. J Virol.

  • Brehm MA, Shultz LD, Greiner DL (2010) Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabet Obes 17:120–125

    Article  Google Scholar 

  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET et al (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2:223–238

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    Article  PubMed  CAS  Google Scholar 

  • Choudhary SK, Margolis DM (2011) Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu Rev Pharmacol Toxicol 51:397–418

    Article  PubMed  CAS  Google Scholar 

  • Choudhary SK, Rezk NL, Ince WL, Cheema M, Zhang L, Su L, Swanstrom R, Kashuba AD, Margolis DM (2009) Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2-/-{gamma}c-/- mouse. J Virol 83:8254–8258

    Article  PubMed  CAS  Google Scholar 

  • Choudhary S, Archin N, Cheema M, Dahl N, Garcia JV, Margolis D (2012) Latent HIV-1 infection of resting CD4+ T cells in the humanized Rag2-/-{gamma}c-/- Mouse. J Virol 86:114–120

    Google Scholar 

  • Clifford DB (2002) AIDS dementia. Med Clin North Am 86:537–550, vi

    Article  PubMed  Google Scholar 

  • Cogle CR, Yachnis AT, Laywell E D, Zander DS, Wingard JR, Steindler DA, Scott EW (2004) Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363:1432–1437

    Google Scholar 

  • Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, Epstein AA, Gelbard HA, Boska MD, Poluektova LY (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 31:3148–3157

    Article  PubMed  CAS  Google Scholar 

  • de Vries HE, Hendriks JJA, Honing H, de Lavalette CR, van der Pol SMA, Hooijberg E, Dijkstra CD, van den Berg TK (2002) Signal-regulatory protein a-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J Immunol 168:5832–5839

    PubMed  Google Scholar 

  • Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, Zou W, Payne DA, Estes JD, Garcia JV (2010) Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS One 5:e8829

    Article  PubMed  Google Scholar 

  • Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, Zein S, Powell DA, Wahl A, Kwak YT, Welch BD, Kay MS, Payne DA, Gallay P, Appella E, Estes JD, Lu M, Garcia JV (2011) One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol 85:7582–7593

    Article  PubMed  CAS  Google Scholar 

  • Dick JE, Bhatia M, Gan O, Kapp U, Wang JC (1997) Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15(Suppl 1):199–203, discussion 204–197

    Article  PubMed  Google Scholar 

  • Dickson DW, Lee SC, Mattiace, LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7:75–83

    Google Scholar 

  • DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A 92:377–381

    Article  PubMed  CAS  Google Scholar 

  • Fulop GM, Phillips RA (1990) The scid mutation in mice causes a general defect in DNA repair. Nature 347:479–482

    Article  PubMed  CAS  Google Scholar 

  • Garcia S, Dadaglio G, Gougeon ML (1997) Limits of the human-PBL-SCID mice model: severe restriction of the V beta T-cell repertoire of engrafted human T cells. Blood 89:329–336

    PubMed  CAS  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed  CAS  Google Scholar 

  • Giuffre AC, Higgins J, Buckheit RW Jr, North TW (2003) Susceptibilities of simian immunodeficiency virus to protease inhibitors. Antimicrob Agents Chemother 5:1756–1759

    Google Scholar 

  • Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103:335–342

    Article  PubMed  CAS  Google Scholar 

  • Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, Wood C, Dewhurst S, Gendelman HE, Poluektova L (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol 81:2700–2712

    Article  PubMed  CAS  Google Scholar 

  • Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L (2010a) Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 177:2938–2949

    Article  PubMed  CAS  Google Scholar 

  • Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY (2010b) CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 184:7082–7091

    Article  PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  • Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell J, Lantos P (1996) Neuropathology of early HIV-1 infection. Brain Pathol 6:1–15

    Article  PubMed  CAS  Google Scholar 

  • Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM, Schweitzer I, Beamer WG, Shultz KL, Pelsue SC et al (1995) Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol 146:888–902

    PubMed  CAS  Google Scholar 

  • Heaton RK et al (2010) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J NeuroVirol 17:3–16

    Article  PubMed  Google Scholar 

  • Hendrickson EA, Qin XQ, Bump EA, Schatz DG, Oettinger M, Weaver DT (1991) A link between double-strand break-related repair and V(D)J recombination: the scid mutation. Proc Natl Acad Sci U S A 88:4061–4065

    Article  PubMed  CAS  Google Scholar 

  • Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362

    Article  PubMed  CAS  Google Scholar 

  • Hofling AA, Vogler C, Creer MH, Sands MS (2003) Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 101:2054–2063

    Article  PubMed  CAS  Google Scholar 

  • Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, Sykes M, Yang Y-G, Ohdan H (2007) Role for CD47-SIRPa signaling in xenograft rejection by macrophages. Proc Natl Acad Sci 104:5062–5066

    Article  PubMed  CAS  Google Scholar 

  • Ikebe M, Miyakawa K, Takahashi K, Ohbo K, Nakamura M, Sugamura K, Suda T, Yamamura K, Tomita K (1997) Lymphohaematopoietic abnormalities and systemic lymphoproliferative disorder in interleukin-2 receptor gamma chain-deficient mice. Int J Exp Pathol 78:133–148

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  PubMed  CAS  Google Scholar 

  • Johnston SC, Dustin ML, Hibbs ML, Springer TA (1990) On the species specificity of the interaction of LFA-1 with intercellular adhesion molecules. J Immunol 145:1181–1187

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T, Miyasaka M, Ito M, Ueyama Y, Yamamoto N (1997) High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection. Leukemia 11(Suppl 3):109–112

    PubMed  Google Scholar 

  • Langford D, Masliah E (2001) Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathol 11:306–312

    Google Scholar 

  • Legrand N et al (2009) Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6:5–9

    Article  PubMed  CAS  Google Scholar 

  • Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, de Geus SJ, Pouw SM, Bohne M, Voordouw A, Weijer K, Di Santo JP, Spits H (2011) Functional CD47/signal regulatory protein alpha (SIRP{alpha}) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A 108:13224–13229

    Article  PubMed  CAS  Google Scholar 

  • Manz M (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26:537–541

    Article  PubMed  CAS  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200

    Article  PubMed  CAS  Google Scholar 

  • Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    PubMed  CAS  Google Scholar 

  • Michaels J, Sharer LR, Epstein LG (1988) Human immunodeficiency virus type 1 (HIV-1) infection of the nervous system: a review. Immunodefic Rev 1:71–104

    PubMed  CAS  Google Scholar 

  • Miura Y, Misawa N, Kawano Y, Okada H, Inagaki Y, Yamamoto N, Ito M, Yagita H, Okumura K, Mizusawa H, Koyanagi Y (2003) Tumor necrosis factor-related apoptosis-inducing ligand induces neuronal death in a murine model of HIV central nervous system infection. Proc Natl Acad Sci U S A 100:2777–2782

    Article  PubMed  CAS  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    Article  PubMed  CAS  Google Scholar 

  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  PubMed  CAS  Google Scholar 

  • Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242:1684–1686

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525–535

    Article  PubMed  CAS  Google Scholar 

  • Neff CP, Kurisu T, Ndolo T, Fox K, Akkina R (2011a) A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. PLoS One 6:e20209

    Article  PubMed  CAS  Google Scholar 

  • Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, Smith DD, Swiderski P, Rossi JJ, Akkina R (2011b) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3:66ra66

    Article  Google Scholar 

  • Nie C, Sato K, Misawa N, Kitayama H, Fujino H, Hiramatsu H, Heike T, Nakahata T, Tanaka Y, Ito M, Koyanagi Y (2009) Selective infection of CD4+ effector memory T lymphocytes leads to preferential depletion of memory T lymphocytes in R5 HIV-1-infected humanized NOD/SCID/IL-2Rgammanull mice. Virology 394:64–72

    Article  PubMed  CAS  Google Scholar 

  • Oettinger MA (1996) Cutting apart V(D)J recombination. Curr Opin Genet Dev 6:141–145

    Article  PubMed  CAS  Google Scholar 

  • Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, Moriyama M, Nakamura M, Katsuki M, Takahashi K, Yamamura K, Sugamura K (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87:956–967

    PubMed  CAS  Google Scholar 

  • Olesen R, Wahl A, Denton PW, Garcia JV (2011) Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod Immunol 88:195–203

    Article  PubMed  CAS  Google Scholar 

  • Pearson T, Greiner DL, Shultz LD (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol Chapter 15:Unit 15 21.

    Google Scholar 

  • Persidsky Y, Limoges J, McComb R, Bock P, Baldwin T, Tyor W, Patil A, Nottet HS, Epstein L, Gelbard H, Flanagan E, Reinhard J, Pirruccello SJ, Gendelman HE (1996) Human immunodeficiency virus encephalitis in SCID mice [see comments]. Am J Pathol 149:1027–1053

    PubMed  CAS  Google Scholar 

  • Pflumio F, Izac B, Katz A, Shultz L, Vainchenker W, Coulombel L (1996) Phenotype and function of human hematopoietic cells engrafting immune- deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731–3740

    PubMed  CAS  Google Scholar 

  • Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002) Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol 168:3941–3949

    PubMed  CAS  Google Scholar 

  • Poluektova L, Gorantla S, Faraci J, Birusingh K, Dou H, Gendelman HE (2004a) Neuroregulatory events follow adaptive immune-mediated elimination of HIV-1-infected macrophages: studies in a murine model of viral encephalitis. J Immunol 172:7610–7617

    PubMed  CAS  Google Scholar 

  • Poluektova LY, Gorantla S, Gendelman HE (2004b) Studies of adaptive immunity in a murine model of HIV-1 encephalitis. In: Neurology of AIDS, 2nd Edition (Gendelman HG, Igor; Lipton, Stuart; Swindells, Susan, ed): Oxford Univ Pr.

  • Poluektova L, Meyer V, Walters L, Paez X, Gendelman HE (2005) Macrophage-induced inflammation affects hippocampal plasticity and neuronal development in a murine model of HIV-1 encephalitis. Glia 52:344–353

    Article  PubMed  Google Scholar 

  • Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rongvaux A, Eynon EE, Manz MG, Flavell RA (2011) Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood.

  • Rizza P, Santini SM, Logozzi MA, Lapenta C, Sestili P, Gherardi G, Lande R, Spada M, Parlato S, Belardelli F, Fais S (1996) T-cell dysfunctions in hu-PBL-SCID mice infected with human immunodeficiency virus (HIV) shortly after reconstitution: in vivo effects of HIV on highly activated human immune cells. J Virol 70:7958–7964

    PubMed  CAS  Google Scholar 

  • Roncarolo MG, Bigler M, Martino S, Ciuti E, Tovo PA, Wagner J (1996) Immune functions of cord blood cells before and after transplantation. J Hematother 5:157–160

    Article  PubMed  CAS  Google Scholar 

  • Sango K, Joseph A, Patel M, Osiecki K, Dutta M, Goldstein H (2010) Highly active antiretroviral therapy potently suppresses HIV infection in humanized Rag2-/-gammac-/- mice. AIDS Res Hum Retrovir 26:735–746

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Koyanagi Y (2011) The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp Biol Med (Maywood) 236:977–985

    Google Scholar 

  • Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y (2010) Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2R[gamma]null mice infected with CCR5-tropic HIV-1. Vaccine 28:B32–B37

    Article  PubMed  CAS  Google Scholar 

  • Schuler W, Weiler IJ, Schuler A, Phillips RA, Rosenberg N, Mak TW, Kearney JF, Perry RP, Bosma MJ (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46:963–972

    Article  PubMed  CAS  Google Scholar 

  • Serreze DV, Leiter EH, Hanson MS, Christianson SW, Shultz LD, Hesselton RM, Greiner DL (1995) Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells. Diabetes 44:1392–1398

    Article  PubMed  CAS  Google Scholar 

  • Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    PubMed  CAS  Google Scholar 

  • Soulet D, Rivest S (2008) Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 8:508–518

    Article  PubMed  CAS  Google Scholar 

  • Stefanidakis M, Newton G, Lee WY, Parkos CA, Luscinskas FW (2008) Endothelial CD47 interaction with SIRPgamma is required for human T-cell transendothelial migration under shear flow conditions in vitro. Blood 112:1280–1289

    Article  PubMed  CAS  Google Scholar 

  • Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2-/-{gamma}c-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A 108:13218–13223

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, Melkus MW, Padgett-Thomas A, Zupancic M, Haase AT, Garcia JV (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204:705–714

    Google Scholar 

  • Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE, Danska JS (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 8:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Takizawa H, Manz MG (2007) Macrophage tolerance: CD47-SIRP-alpha-mediated signals matter. Nat Immunol 8:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    Article  PubMed  CAS  Google Scholar 

  • Tyor WR, Power C, Gendelman HE, Markham RB (1993) A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A 90:8658–8662

    Article  PubMed  CAS  Google Scholar 

  • van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10:664–674

    Article  PubMed  Google Scholar 

  • Vondenhoff MF, Greuter M, Goverse G, Elewaut D, Dewint P, Ware CF, Hoorweg K, Kraal G, Mebius RE (2009) LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 182:5439–5445

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, Dewan MZ, Yu Z, Ito M, Morio T, Shimizu N, Honda M, Yamamoto N (2007) Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109:212–218

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA (2011) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kovalev GI, Su L (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 109:2978–2981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants R21NS060642, 1P01 DA028555, P20 RR15635, 1 P01 NS043985-01, 2R37 NS36126, 5 P01 DA026146, and 5 P01 MH64570-03. We acknowledge Edward Makarov, Jaclyn Knibbe, Prashanta Dash, Tanuja Gutti and Adrian Epstein for excellent contributions made to the laboratories ongoing scientific investigations.

Conflict of interest disclosure

There are no conflicts of interest for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Y. Poluektova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorantla, S., Gendelman, H.E. & Poluektova, L.Y. Can Humanized Mice Reflect the Complex Pathobiology of HIV-Associated Neurocognitive Disorders?. J Neuroimmune Pharmacol 7, 352–362 (2012). https://doi.org/10.1007/s11481-011-9335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9335-y

Keywords

Navigation