Skip to main content

Neurodegeneration Associated with HIV-1 in the Era of cART

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Infection with human immunodeficiency virus (HIV)-1 targets not only cells of the immune system and eventually causes AIDS, but also triggers HIV-associated neurocognitive disorders (HAND) that can culminate in frank dementia. Several lines of evidence suggest that HIV-1 strikes at the brain in at least two ways: i) by causing toxicity leading to neuronal injury and death and ii) by impairing neurogenesis. Both pathogenic mechanisms share the involvement of neuroinflammatory mediators and seem to be influenced by host and viral factors, including the interferon response, age, and viral subtypes, as well as treatment and comorbidity factors, such as drug abuse. Despite viral control and life prolonging effects of combination antiretroviral treatments (cART), neuroinflammation and concomitant activation of macrophages and microglia accompany the persistence of HAND in people living with HIV (PLWH). Experimental evidence supports two different, but not exclusive hypotheses of how HIV-1 causes neuronal damage in the brain. The “direct injury” hypothesis proposes that viral proteins directly compromise neurons, whereas the “indirect” or “bystander effect” hypothesis states virus infection and viral components trigger in macrophages, microglia and astrocytes the production of neurotoxins that injure neurons. While the life expectancy of PWH approaches the range of uninfected individuals, the prevalence of HAND and observations in autopsy studies have raised the question, if its development shares pathological mechanisms with Alzheimer’s disease (AD). Converging mechanisms underlying HAND and AD may include neuroinflammation, mitogen-activated protein kinase signaling, altered gene expression, oxidative stress, and compromised autophagy leading to synaptic injury and, ultimately, neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid-beta

AD:

Alzheimer’s disease

AIDS:

Acquired immunodeficiency syndrome

APP:

Amyloid precursor protein

BACE:

Beta-secretase

cART:

Combination antiretroviral therapy

CCL:

C-C motif chemokine ligand

CCR:

C-C motif chemokine receptor

CD:

Cluster of differentiation

Cdk5:

Cyclin-dependent kinase 5

CNS:

Central nervous system

CREB1:

CAMP responsive element binding protein 1

CSF:

Cerebrospinal fluid

CXCL:

C-X-C motif chemokine ligand

CXCR:

C-X-C motif chemokine receptor

ERK:

Extracellular signal-regulated kinase

FIV:

Feline immunodeficiency virus

GABA:

Gamma aminobutyric acid

GFAP:

Glial fibrillary acidic protein

gp120:

HIV envelope glycoprotein gp120

GSK-3β:

Glycogen synthase kinase 3 beta

HAD:

HIV-associated dementia

HAND:

HIV-associated neurocognitive disorders

HIV:

Human immunodeficiency virus

HIVE:

HIV encephalitis

HSV:

Herpes simplex virus

IBA-1:

Ionized calcium binding adaptor molecule 1

IgG:

Immunoglobulin G

JNK:

c-Jun N-terminal kinase

KO:

Knockout

LAV:

Lymphadenopathy-associated virus

LCN2:

Lipocalin-2

LPS:

Lipopolysaccharide

LTD:

Long-term depression

LTP:

Long-term potentiation

MAP-2:

Microtubule-associated protein 2

MAPK:

Mitogen-activated protein kinase

MKP-1:

MAPK phosphatase 1

NFkB:

Nuclear factor kappa B

NFT:

Neurofibrillary tangles

NMDA:

N-Methyl-d-aspartate

p38 MAPK:

p38 mitogen-activated protein kinase

PET/CT:

Positron emission tomography–computed tomography

PS1:

Presenilin-1

pTau:

Phosphorylated Tau

PLWH:

People living with HIV

Syp:

Synaptophysin

SIV:

Simian immunodeficiency virus

tg:

Transgenic

tTau:

Total Tau

References

  • Achim, C. L., Adame, A., Dumaop, W., Everall, I. P., & Masliah, E. (2009). Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. Journal of Neuroimmune Pharmacology, 4(2), 190–199.

    Article  Google Scholar 

  • Achim, C. L., Wang, R., Miners, D. K., & Wiley, C. A. (1994). Brain viral burden in HIV infection. Journal of Neuropathology and Experimental Neurology, 53(3), 284–294.

    Article  Google Scholar 

  • Adamson, D. C., Wildemann, B., Sasaki, M., Glass, J. D., McArthur, J. C., Christov, V. I., Dawson, T. M., & Dawson, V. L. (1996). Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science, 274(5294), 1917–1921.

    Article  Google Scholar 

  • Addo, M. M., & Altfeld, M. (2014). Sex-based differences in HIV type 1 pathogenesis. The Journal of Infectious Diseases, 209(Suppl 3), S86–S92.

    Article  Google Scholar 

  • Adle-Biassette, H., Chrétien, F., Wingertsmann, L., Héry, C., Ereau, T., Scaravilli, F., Tardieu, M., & Gray, F. (1999). Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathology and Applied Neurobiology, 25(2), 123–133.

    Article  Google Scholar 

  • Aksenov, M. Y., Aksenova, M. V., Mactutus, C. F., & Booze, R. M. (2010). HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neuroscience Letters, 475(3), 174–178.

    Article  Google Scholar 

  • Alam, J., Blackburn, K., & Patrick, D. (2017). Neflamapimod: Clinical Phase 2b-Ready Oral Small Molecule Inhibitor of p38alpha to Reverse Synaptic Dysfunction in Early Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease, 4(4), 273–278.

    Google Scholar 

  • Albert-Gasco, H., Ros-Bernal, F., Castillo-Gomez, E., & Olucha-Bordonau, F. E. (2020). MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. International Journal of Molecular Sciences, 21(12), 4471.

    Article  Google Scholar 

  • Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., & Berger, E. A. (1996). CC CKR5: A RANTES, MIP-1α, MIP-1ॆ Receptor as a Fusion Cofactor for Macrophage-Tropic HIV-1. Science, 272(5270), 1955–1958.

    Article  Google Scholar 

  • Alonso, K., Pontiggia, P., Medenica, R., & Rizzo, S. (1997). Cytokine patterns in adults with AIDS. Immunological Investigations, 26(3), 341–350.

    Google Scholar 

  • Anthony, I. C., & Bell, J. E. (2008). The Neuropathology of HIV/AIDS. International Review of Psychiatry, 20(1), 15–24.

    Article  Google Scholar 

  • Anthony, I. C., Ramage, S. N., Carnie, F. W., Simmonds, P., & Bell, J. E. (2005). Influence of HAART on HIV-related CNS disease and neuroinflammation. Journal of Neuropathology and Experimental Neurology, 64(6), 529–536.

    Article  Google Scholar 

  • Antinori, A., Arendt, G., Becker, J. T., Brew, B. J., Byrd, D. A., Cherner, M., Clifford, D. B., Cinque, P., Epstein, L. G., Goodkin, K., Gisslen, M., Grant, I., Heaton, R. K., Joseph, J., Marder, K., Marra, C. M., McArthur, J. C., Nunn, M., Price, R. W., … Wojna, V. E. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18), 1789–1799.

    Article  Google Scholar 

  • Aquaro, S., Caliò, R., Balzarini, J., Bellocchi, M. C., Garaci, E., & Perno, C. F. (2002). Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Research, 55(2), 209–225.

    Article  Google Scholar 

  • Ashabi, G., Alamdary, S. Z., Ramin, M., & Khodagholi, F. (2013). Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer’s disease: involvement of nuclear-related factor-2 and nuclear factor-kappaB. Basic & Clinical Pharmacology & Toxicology, 112(3), 145–155.

    Article  Google Scholar 

  • Atzori, C., Ghetti, B., Piva, R., Srinivasan, A. N., Zolo, P., Delisle, M. B., Mirra S. S., & Migheli, A. (2001). Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. Journal of Neuropathology and Experimental Neurology, 60(12), 1190–1197.

    Google Scholar 

  • Bachis, A., Avdoshina, V., Zecca, L., Parsadanian, M., & Mocchetti, I. (2012). Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. The Journal of Neuroscience, 32(28), 9477–9484.

    Article  Google Scholar 

  • Bachman, D. L., Wolf, P. A., Linn, R., Knoefel, J. E., Cobb, J., Belanger, A., D'Agostino, R. B., & White, L. R. (1992). Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology, 42(1), 115–119.

    Article  Google Scholar 

  • Baeten, J. M., Donnell, D., Ndase, P., Mugo, N. R., Campbell, J. D., Wangisi, J., Tappero, J. W., Bukusi, E. A., Cohen, C. R., Katabira, E., Ronald, A., Tumwesigye, E., Were, E., Fife, K. H., Kiarie, J., Farquhar, C., John-Stewart, G., Kakia, A., Odoyo, J., … Partners Pr, E. P. S. T. (2012). Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. The New England Journal of Medicine, 367(5), 399–410.

    Article  Google Scholar 

  • Ballatore, C., Lee, V. M., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience, 8(9), 663–672.

    Google Scholar 

  • Barre-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., & Montagnier, L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220(4599), 868–871.

    Article  Google Scholar 

  • Bhat, N. R., Zhang, P., Lee, J. C., & Hogan, E. L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. The Journal of Neuroscience, 18(5), 1633–1641.

    Article  Google Scholar 

  • Bourgade, K., Garneau, H., Giroux, G., Le Page, A. Y., Bocti, C., Dupuis, G., Frost, E. H., & Fulop, T., Jr. (2015). beta-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16(1), 85–98.

    Article  Google Scholar 

  • Brew, B. J., Crowe, S. M., Landay, A., Cysique, L. A., & Guillemin, G. (2009). Neurodegeneration and ageing in the HAART era. Journal of Neuroimmune Pharmacology, 4(2), 163–174.

    Article  Google Scholar 

  • Brew, B. J., Pemberton, L., Blennow, K., Wallin, A., & Hagberg, L. (2005). CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology, 65(9), 1490–1492.

    Article  Google Scholar 

  • Burlacu, R., Umlauf, A., Luca, A., Gianella, S., Radoi, R., Ruta, S. M., Marcotte, T. D., Ene, L., & Achim, C. L. (2018). Sex-based differences in neurocognitive functioning in HIV-infected young adults. AIDS, 32(2), 217–225.

    Article  Google Scholar 

  • Canete, T., Blazquez, G., Tobena, A., Gimenez-Llort, L., & Fernandez-Teruel, A. (2015). Cognitive and emotional alterations in young Alzheimer’s disease (3xTgAD) mice: effects of neonatal handling stimulation and sexual dimorphism. Behavioural Brain Research, 281, 156–171.

    Google Scholar 

  • Centers for Disease Control. (1981). Pneumocystis pneumonia–Los Angeles. MMWR. Morbidity and Mortality Weekly Report, 30(21), 250–252.

    Google Scholar 

  • Chai, Q., Jovasevic, V., Malikov, V., Sabo, Y., Morham, S., Walsh, D., & Naghavi, M. H. (2017). HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nature Communications, 8(1), 1522.

    Article  Google Scholar 

  • Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., Tone, Y., Tong, Y., & Song, W. (2012). Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 15(1), 77–90.

    Article  Google Scholar 

  • Cho, Y. E., Lee, M. H., & Song, B. J. (2017). Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats. PLoS One, 12(1), e0169945.

    Article  Google Scholar 

  • Clifford, D. B., Fagan, A. M., Holtzman, D. M., Morris, J. C., Teshome, M., Shah, A. R., & Kauwe, J. S. (2009). CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology, 73(23), 1982–1987.

    Article  Google Scholar 

  • Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., & Lusso, P. (1995). Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 270(5243), 1811–1815.

    Article  Google Scholar 

  • Criscuolo, C., Fontebasso, V., Middei, S., Stazi, M., Ammassari-Teule, M., Yan, S. S., & Origlia, N. (2017). Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer’s disease mouse model. Scientific Reports, 7(1), 42370.

    Google Scholar 

  • Davis, L. E., Hjelle, B. L., Miller, V. E., Palmer, D. L., Llewellyn, A. L., Merlin, T. L., Young, S. A., Mills, R. G., Wachsman, W., & Wiley, C. A. (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology, 42(9), 1736–1739.

    Article  Google Scholar 

  • Deeks, S. G., Overbaugh, J., Phillips, A., & Buchbinder, S. (2015). HIV infection. Nature Reviews. Disease Primers, 1(1), 15035.

    Article  Google Scholar 

  • Desquilbet, L., Jacobson, L. P., Fried, L. P., Phair, J. P., Jamieson, B. D., Holloway, M., Margolick, J. B., & Multicenter, A. C. S. (2007). HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(11), 1279–1286.

    Article  Google Scholar 

  • Division of HIV/AIDS Prevention, N. C. f. H. A., Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC). (2020). Estimated HIV incidence and prevalence in the United States, 2014–2018. V. H. S. T. D. National Center for Hiv/Aids, T. B. P. D. o. H. A. Prevention, V. H. S. T. D. National Center for Hiv/Aids et al. Atlanta, GA. 25.

    Google Scholar 

  • Du, Y., Du, Y., Zhang, Y., Huang, Z., Fu, M., Li, J., Pang, Y., Lei, P., Wang, Y. T., Song, W., He, G., & Dong, Z. (2019). MKP-1 reduces Abeta generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduction and Targeted Therapy, 4(1), 58.

    Article  Google Scholar 

  • Eletto, D., Russo, G., Passiatore, G., Del Valle, L., Giordano, A., Khalili, K., Gualco, E., & Peruzzi, F. (2008). Inhibition of SNAP25 expression by HIV-1 Tat involves the activity of mir-128a. Journal of Cellular Physiology, 216(3), 764–770.

    Article  Google Scholar 

  • Ellis, R., Langford, D., & Masliah, E. (2007). HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nature Reviews. Neuroscience, 8(1), 33–44.

    Article  Google Scholar 

  • Ernst, T., Jiang, C. S., Nakama, H., Buchthal, S., & Chang, L. (2010). Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. Journal of Magnetic Resonance Imaging, 32(5), 1045–1053.

    Article  Google Scholar 

  • Everall, I., Luthert, P., & Lantos, P. (1993). A review of neuronal damage in human immunodeficiency virus infection: its assessment, possible mechanism and relationship to dementia. Journal of Neuropathology and Experimental Neurology, 52(6), 561–566.

    Article  Google Scholar 

  • Ferrer, I., Blanco, R., Carmona, M., & Puig, B. (2001a). Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. Journal of Neural Transmission (Vienna), 108(12), 1397–1415.

    Article  Google Scholar 

  • Ferrer, I., Blanco, R., Carmona, M., Ribera, R., Goutan, E., Puig, B., Rey, M. J., Cardozo, A., Vinals, F., & Ribalta, T. (2001b). Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathology, 11(2), 144–158.

    Article  Google Scholar 

  • Fiala, M., Looney, D. J., Stins, M., Way, D. D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E. S., Shapshak, P., Weinand, M., Graves, M. C., Witte, M., & Kim, K. S. (1997). TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Molecular Medicine, 3(8), 553–564.

    Article  Google Scholar 

  • Fisher, D. W., Bennett, D. A., & Dong, H. (2018). Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiology of Aging, 70, 308–324.

    Google Scholar 

  • Freiberg, M. S., Chang, C. C., Kuller, L. H., Skanderson, M., Lowy, E., Kraemer, K. L., Butt, A. A., Bidwell Goetz, M., Leaf, D., Oursler, K. A., Rimland, D., Rodriguez Barradas, M., Brown, S., Gibert, C., McGinnis, K., Crothers, K., Sico, J., Crane, H., Warner, A., … Justice, A. C. (2013). HIV infection and the risk of acute myocardial infarction. JAMA Internal Medicine, 173(8), 614–622.

    Article  Google Scholar 

  • Fulop, T., Witkowski, J. M., Larbi, A., Khalil, A., Herbein, G., & Frost, E. H. (2019). Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease? Journal of Neurovirology, 25(5), 634–647.

    Article  Google Scholar 

  • Gallo, R. C., Salahuddin, S. Z., Popovic, M., Shearer, G. M., Kaplan, M., Haynes, B. F., Palker, T. J., Redfield, R., Oleske, J., Safai, B., et al. (1984). Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science, 224(4648), 500–503.

    Article  Google Scholar 

  • Genis, P., Jett, M., Bernton, E. W., Boyle, T., Gelbard, H. A., Dzenko, K., Keane, R. W., Resnick, L., Mizrachi, Y., Volsky, D. J., et al. (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. The Journal of Experimental Medicine, 176(6), 1703–1718.

    Article  Google Scholar 

  • Giulian, D., Vaca, K., & Noonan, C. A. (1990). Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science, 250(4987), 1593–1596.

    Article  Google Scholar 

  • Glass, J. D., Fedor, H., Wesselingh, S. L., & McArthur, J. C. (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Annals of Neurology, 38(5), 755–762.

    Article  Google Scholar 

  • Gonzalez-Scarano, F., & Martin-Garcia, J. (2005). The neuropathogenesis of AIDS. Nature Reviews. Immunology, 5(1), 69–81.

    Article  Google Scholar 

  • Gras, G., & Kaul, M. (2010). Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology, 7, 30.

    Article  Google Scholar 

  • Graus, F., Ribalta, T., Abos, J., Alom, J., Cruz-Sanchez, F., Mallolas, J., Miro, J. M., Cardesa, A., & Tolosa, E. (1990). Subacute cerebellar syndrome as the first manifestation of AIDS dementia complex. Acta Neurologica Scandinavica, 81(2), 118–120.

    Article  Google Scholar 

  • Group, K. B. S. (2011). Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. The Lancet Infectious Diseases, 11(3), 171–180.

    Article  Google Scholar 

  • Hanamsagar, R., & Bilbo, S. D. (2016). Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development. The Journal of Steroid Biochemistry and Molecular Biology, 160, 127–133.

    Article  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185.

    Article  Google Scholar 

  • Heaton, R. K., Franklin, D. R., Ellis, R. J., McCutchan, J. A., Letendre, S. L., Leblanc, S., Corkran, S. H., Duarte, N. A., Clifford, D. B., Woods, S. P., Collier, A. C., Marra, C. M., Morgello, S., Mindt, M. R., Taylor, M. J., Marcotte, T. D., Atkinson, J. H., Wolfson, T., Gelman, B. B., … C. Group and H. Group. (2011). HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Journal of Neurovirology, 17(1), 3–16.

    Article  Google Scholar 

  • Hensley, K., Floyd, R. A., Zheng, N. Y., Nael, R., Robinson, K. A., Nguyen, X., Pye, Q. N., Stewart, C. A., Geddes, J., Markesbery, W. R., Patel, E., Johnson, G. V., & Bing, G. (1999). p38 kinase is activated in the Alzheimer’s disease brain. Journal of Neurochemistry, 72(5), 2053–2058.

    Article  Google Scholar 

  • Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D., & Horuk, R. (1997). CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Current Biology, 7(2), 112–121.

    Article  Google Scholar 

  • Heyes, M. P., B. J. Brew, A. Martin, R. W. Price, A. M. Salazar, J. J. Sidtis, J. A. Yergey, M. M. Mouradian, A. E. Sadler, J. Keilp and . (1991). "Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status." Annals of Neurology 29(2): 202-209.

    Google Scholar 

  • Hickey, W. F. (1999). Leukocyte traffic in the central nervous system: the participants and their roles. Seminars in immunology. Elsevier.

    Google Scholar 

  • Ho, D. D., Bredesen, D. E., Vinters, H. V., & Daar, E. S. (1989). The acquired immunodeficiency syndrome (AIDS) dementia complex. Annals of Internal Medicine, 111(5), 400–410.

    Article  Google Scholar 

  • Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews. Neurology, 15(10), 565–581.

    Article  Google Scholar 

  • Iqbal, K., Liu, F., Gong C. X., & Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, 7(8), 656–664.

    Google Scholar 

  • Jones, G. J., Barsby, N. L., Cohen, E. A., Holden, J., Harris, K., Dickie, P., Jhamandas, J., & Power, C. (2007). HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. The Journal of Neuroscience, 27(14), 3703–3711.

    Article  Google Scholar 

  • Jones, S. V., & Kounatidis, I. (2017). Nuclear Factor-Kappa B and Alzheimer Disease, Unifying Genetic and Environmental Risk Factors from Cell to Humans. Frontiers in Immunology, 8, 1805.

    Article  Google Scholar 

  • Kaltschmidt, B., Ndiaye, D., Korte, M., Pothion, S., Arbibe, L., Prullage, M., Pfeiffer, J., Lindecke, A., Staiger, V., Israel, A., Kaltschmidt, C., & Memet, S. (2006). NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Molecular and Cellular Biology, 26(8), 2936–2946.

    Article  Google Scholar 

  • Kaltschmidt, B., Uherek, M., Wellmann, H., Volk, B., & Kaltschmidt, C. (1999). Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9409–9414.

    Article  Google Scholar 

  • Kametani, F., & Hasegawa, M. (2018). Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Frontiers Neuroscience, 12, 25.

    Google Scholar 

  • Kang, Y. J., Digicaylioglu, M., Russo, R., Kaul, M., Achim, C. L., Fletcher, L., Masliah, E., & Lipton, S. A. (2010). Erythropoietin plus insulin-like growth factor-I protects against neuronal damage in a murine model of human immunodeficiency virus-associated neurocognitive disorders. Annals of Neurology, 68(3), 342–352.

    Article  Google Scholar 

  • Kaspar, M. B., & Sterling, R. K. (2017). Mechanisms of liver disease in patients infected with HIV. BMJ Open Gastroenterology, 4(1), e000166.

    Article  Google Scholar 

  • Kaul, M. (2008). HIV's double strike at the brain: neuronal toxicity and compromised neurogenesis. Frontiers in Bioscience, 13, 2484–2494.

    Article  Google Scholar 

  • Kaul, M., Garden, G. A., & Lipton, S. A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 410(6831), 988–994.

    Article  Google Scholar 

  • Kaul, M., & Lipton, S. A. (1999). Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8212–8216.

    Article  Google Scholar 

  • Kaul, M., Ma, Q., Medders, K. E., Desai, M. K., & Lipton, S. A. (2007). HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death and Differentiation, 14(2), 296–305.

    Article  Google Scholar 

  • Kester, M. I., van der Vlies, A. E., Blankenstein, M. A., Pijnenburg, Y. A., van Elk, E. J., Scheltens, P., & van der Flier, W. M. (2009). CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology, 73(17), 1353–1358.

    Google Scholar 

  • Ketzler, S., Weis, S., Haug, H., & Budka, H. (1990). Loss of neurons in the frontal cortex in AIDS brains. Acta Neuropathology (Berl), 80(1), 92–94.

    Article  Google Scholar 

  • Kim, B. O., Liu, Y., Ruan, Y., Xu, Z. C., Schantz, L., & He, J. J. (2003). Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. The American Journal of Pathology, 162(5), 1693–1707.

    Article  Google Scholar 

  • Kirouac, L., Rajic, A. J., Cribbs, D. H., & Padmanabhan, J. (2017). Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer’s Disease. eNeuro, 4(2), ENEURO.0149-0116.2017.

    Article  Google Scholar 

  • Kitai, R., Zhao, M. L., Zhang, N., Hua, L. L., & Lee, S. C. (2000). Role of MIP-1beta and RANTES in HIV-1 infection of microglia: inhibition of infection and induction by IFNbeta. Journal of Neuroimmunology, 110(1-2), 230–239.

    Article  Google Scholar 

  • Koedel, U., Kohleisen, B., Sporer, B., Lahrtz, F., Ovod, V., Fontana, A., Erfle, V., & Pfister, H. W. (1999). HIV type 1 Nef protein is a viral factor for leukocyte recruitment into the central nervous system. Journal of Immunology, 163(3), 1237–1245.

    Article  Google Scholar 

  • Koran, M. E. I., Wagener, M., Hohman, T. J., & Alzheimer’s Neuroimaging, I. (2017). Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging and Behavior, 11(1), 205–213.

    Article  Google Scholar 

  • Krathwohl, M. D., & Kaiser, J. L. (2004a). Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells, 22(1), 109–118.

    Article  Google Scholar 

  • Krathwohl, M. D., & Kaiser, J. L. (2004b). HIV-1 promotes quiescence in human neural progenitor cells. The Journal of Infectious Diseases, 190(2), 216–226.

    Article  Google Scholar 

  • Lam, J. O., Hou, C. E., Hojilla, J. C., Anderson, A. N., Gilsanz, P., Alexeeff, S. E., Levine-Hall, T., Hood, N., Lee, C., Satre, D. D., & Silverberg, M. J. (2021). Comparison of dementia risk after age 50 between individuals with and without HIV infection. AIDS, 35(5), 821–828.

    Article  Google Scholar 

  • Langford, D., Hurford, R., Hashimoto, M., Digicaylioglu, M., & Masliah, E. (2005). Signalling crosstalk in FGF2-mediated protection of endothelial cells from HIV-gp120. BMC Neuroscience, 6(1), 8.

    Article  Google Scholar 

  • Lannuzel, A., Barnier, J. V., Hery, C., Huynh, V. T., Guibert, B., Gray, F., Vincent, J. D., & Tardieu, M. (1997). Human immunodeficiency virus type 1 and its coat protein gp120 induce apoptosis and activate JNK and ERK mitogen-activated protein kinases in human neurons. Annals of Neurology, 42(6), 847–856.

    Article  Google Scholar 

  • Letendre, S. L., Lanier, E. R., & McCutchan, J. A. (1999). Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. The Journal of Infectious Diseases, 180(2), 310–319.

    Article  Google Scholar 

  • Loewenstein, R. J., & Sharfstein, S. S. (1983). Neuropsychiatric aspects of acquired immune deficiency syndrome. International Journal of Psychiatry in Medicine, 13(4), 255–260.

    Article  Google Scholar 

  • Makitalo, S., Mellgren, A., Borgh, E., Kilander, L., Skillback, T., Zetterberg, H., & Gisslen, M. (2015). The cerebrospinal fluid biomarker profile in an HIV-infected subject with Alzheimer’s disease. AIDS Research and Therapy, 12(1), 23.

    Article  Google Scholar 

  • Martin-Garcia, J., Kolson, D. L., & Gonzalez-Scarano, F. (2002). Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS, 16(13), 1709–1730.

    Article  Google Scholar 

  • Masliah, E., Heaton, R. K., Marcotte, T. D., Ellis, R. J., Wiley, C. A., Mallory, M., Achim, C. L., McCutchan, J. A., Nelson, J. A., Atkinson, J. H., & Grant, I. (1997). Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC group. The HIV Neurobehavioral Research Center. Annals of Neurology, 42(6), 963–972.

    Article  Google Scholar 

  • Maung, R., Hoefer, M. M., Sanchez, A. B., Sejbuk, N. E., Medders, K. E., Desai, M. K., Catalan, I. C., Dowling, C. C., de Rozieres, C. M., Garden, G. A., Russo, R., Roberts, A. J., Williams, R., & Kaul, M. (2014a). CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. Journal of Immunology, 193(4), 1895–1910.

    Article  Google Scholar 

  • Maung, R., Medders, K. E., Sejbuk, N. E., Desai, M. K., Russo, R., & Kaul, M. (2012). Genetic knockouts suggest a critical role for HIV co-receptors in models of HIV gp120-induced brain injury. Journal of Neuroimmune Pharmacology, 7(2), 306–318.

    Article  Google Scholar 

  • McDonnell, J., Haddow, L., Daskalopoulou, M., Lampe, F., Speakman, A., Gilson, R., Phillips, A., Sherr, L., Wayal, S., Harrison, J., Antinori, A., Maruff, P., Schembri, A., Johnson, M., Collins, S., Rodger, A., & Cognitive Impairment in People with HIV in the European Region (CIPHER) Study Group. (2014). Minimal cognitive impairment in UK HIV-positive men who have sex with men: effect of case definitions and comparison with the general population and HIV-negative men. Journal of Acquired Immune Deficiency Syndromes, 67(2), 120–127.

    Article  Google Scholar 

  • McLaurin, K. A., Booze, R. M., Mactutus, C. F., & Fairchild, A. J. (2017). Sex Matters: Robust Sex Differences in Signal Detection in the HIV-1 Transgenic Rat. Frontiers in Behavioral Neuroscience, 11, 212.

    Article  Google Scholar 

  • Medders, K. E., Sejbuk, N. E., Maung, R., Desai, M. K., & Kaul, M. (2010). Activation of p38 MAPK is required in monocytic and neuronal cells for HIV glycoprotein 120-induced neurotoxicity. Journal of Immunology, 185(8), 4883–4895.

    Article  Google Scholar 

  • Meucci, O., Fatatis, A., Simen, A. A., Bushell, T. J., Gray, P. W., & Miller, R. J. (1998). Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 95(24), 14500–14505.

    Article  Google Scholar 

  • Milanini, B., & Valcour, V. (2017). Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer’s Disease: an Emerging Issue in Geriatric NeuroHIV. Current HIV/AIDS Reports, 14(4), 123–132.

    Article  Google Scholar 

  • Mishra, M., Taneja, M., Malik, S., Khalique, H., & Seth, P. (2010). Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. Journal of Neurovirology, 16(5), 355–367.

    Article  Google Scholar 

  • Mocchetti, I., Bachis, A., & Avdoshina, V. (2012). Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotoxicity Research, 21(1), 79–89.

    Article  Google Scholar 

  • Nath, A., Haughey, N. J., Jones, M., Anderson, C., Bell, J. E., & Geiger, J. D. (2000). Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Annals of Neurology, 47(2), 186–194.

    Article  Google Scholar 

  • Ojeda-Juarez, D., Shah, R., Fields, J. A., Harahap-Carrillo, I. S., Koury, J., Maung, R., Gelman, B. B., Baaten, B. J., Roberts, A. J., & Kaul, M. (2020a). Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection. Brain, Behavior, and Immunity, 89, 184–199.

    Article  Google Scholar 

  • Okamoto, S., Kang, Y. J., Brechtel, C. W., Siviglia, E., Russo, R., Clemente, A., Harrop, A., McKercher, S., Kaul, M., & Lipton, S. A. (2007). HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell, 1(2), 230–236.

    Article  Google Scholar 

  • Ortega, M., & Ances, B. M. (2014). Role of HIV in amyloid metabolism. Journal of Neuroimmune Pharmacology, 9(4), 483–491.

    Article  Google Scholar 

  • Palella, F. J., Jr., Delaney, K. M., Moorman, A. C., Loveless, M. O., Fuhrer, J., Satten, G. A., Aschman, D. J., & Holmberg, S. D. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. The New England Journal of Medicine, 338(13), 853–860.

    Article  Google Scholar 

  • Patrick, C., Crews, L., Desplats, P., Dumaop, W., Rockenstein, E., Achim, C. L., Everall, I. P., & Masliah, E. (2011). Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. The American Journal of Pathology, 178(4), 1646–1661.

    Article  Google Scholar 

  • Petito, C. K., Cho, E. S., Lemann, W., Navia, B. A., & Price, R. W. (1986). Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. Journal of Neuropathology and Experimental Neurology, 45(6), 635–646.

    Article  Google Scholar 

  • Piller, S. C., Jans, P., Gage, P. W., & Jans, D. A. (1998). Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4595–4600.

    Article  Google Scholar 

  • Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., Burke, J. R., Hurd, M. D., Potter, G. G., Rodgers, W. L., Steffens, D. C., Willis, R. J., & Wallace, R. B. (2007). Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology, 29(1-2), 125–132.

    Article  Google Scholar 

  • Reyes, M. G., Faraldi, F., Senseng, C. S., Flowers, C., & Fariello, R. (1991). Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropathology (Berl), 82(1), 39–44.

    Article  Google Scholar 

  • Rosenmann, H. (2012). CSF biomarkers for amyloid and tau pathology in Alzheimer’s disease. Journal of Molecular Neuroscience, 47(1), 1–14.

    Google Scholar 

  • Rostasy, K., Monti, L., Yiannoutsos, C., Wu, J., Bell, J., Hedreen, J., & Navia, B. A. (2000). NFkappaB activation, TNF-alpha expression, and apoptosis in the AIDS-Dementia-Complex. Journal of Neurovirology, 6(6), 537–543.

    Article  Google Scholar 

  • Rozzi, S. J., Avdoshina, V., Fields, J. A., & Mocchetti, I. (2018). Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discovery, 4(1), 8.

    Article  Google Scholar 

  • Rubin, L. H., Sundermann, E. E., & Moore, D. J. (2019). The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer’s disease. Journal of Neurovirology, 25(5), 661–672.

    Article  Google Scholar 

  • Sanchez, A. B., Medders, K. E., Maung, R., Sanchez-Pavon, P., Ojeda-Juarez, D., & Kaul, M. (2016a). CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and L-type Ca(2+) channels upstream of p38 MAPK. Journal of Neuroinflammation, 13(1), 252.

    Article  Google Scholar 

  • Sanchez, A. B., Varano, G. P., de Rozieres, C. M., Maung, R., Catalan, I. C., Dowling, C. C., Sejbuk, N. E., Hoefer, M. M., & Kaul, M. (2016b). Antiretrovirals, Methamphetamine, and HIV-1 Envelope Protein gp120 Compromise Neuronal Energy Homeostasis in Association with Various Degrees of Synaptic and Neuritic Damage. Antimicrobial Agents and Chemotherapy, 60(1), 168–179.

    Article  Google Scholar 

  • Saylor, D., Dickens, A. M., Sacktor, N., Haughey, N., Slusher, B., Pletnikov, M., Mankowski, J. L., Brown, A., Volsky, D. J., & McArthur, J. C. (2016a). HIV-associated neurocognitive disorder--pathogenesis and prospects for treatment. Nature Reviews. Neurology, 12(4), 234–248.

    Article  Google Scholar 

  • Schrager, J. A., Der Minassian, V., & Marsh, J. W. (2002). HIV Nef increases T cell ERK MAP kinase activity. The Journal of Biological Chemistry, 277(8), 6137–6142.

    Article  Google Scholar 

  • Schulze-Osthoff, K., Ferrari, D., Riehemann, K., & Wesselborg, S. (1997). Regulation of NF-κB Activation by MAP Kinase Cascades. Immunobiology, 198(1-3), 35–49.

    Article  Google Scholar 

  • Schwartz, L., & Major, E. O. (2006). Neural progenitors and HIV-1-associated central nervous system disease in adults and children. Current HIV Research, 4(3), 319–327.

    Article  Google Scholar 

  • Shiramizu, B., Gartner, S., Williams, A., Shikuma, C., Ratto-Kim, S., Watters, M., Aguon, J., & Valcour, V. (2005). Circulating proviral HIV DNA and HIV-associated dementia. AIDS, 19(1), 45–52.

    Article  Google Scholar 

  • Sierksma, A. S., Vanmierlo, T., De Vry, J., Raijmakers, M. E., Steinbusch, H. W., van den Hove, D. L., & Prickaerts, J. (2012). Effects of prenatal stress exposure on soluble Abeta and brain-derived neurotrophic factor signaling in male and female APPswe/PS1dE9 mice. Neurochemistry International, 61(5), 697–701.

    Article  Google Scholar 

  • Singh, H., Ojeda-Juarez, D., Maung, R., Shah, R., Roberts, A. J., & Kaul, M. (2020). A pivotal role for Interferon-alpha receptor-1 in neuronal injury induced by HIV-1. Journal of Neuroinflammation, 17(1), 226.

    Article  Google Scholar 

  • Soria Lopez, J. A., González, H. M., & Léger, G. C. (2019). Alzheimer’s disease. Handbook of Clinical Neurology, Elsevier 167, 231–255.

    Google Scholar 

  • Sun, A. (2003). P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Experimental Neurology, 183(2), 394–405.

    Google Scholar 

  • Tarawneh, R., & Holtzman, D. M. (2012). The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspectives in Medicine, 2(5), a006148.

    Article  Google Scholar 

  • Terai, K., Matsuo, A., & McGeer, P. L. (1996). Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Research, 735(1), 159–168.

    Article  Google Scholar 

  • Thaney, V. E., O'Neill, A. M., Hoefer, M. M., Maung, R., Sanchez, A. B., & Kaul, M. (2017). IFNbeta Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury. Scientific Reports, 7, 46514.

    Article  Google Scholar 

  • The Joint United Nations Programme on HIV/AIDS (UNAIDS). (2020). “Global HIV & AIDS statistics — 2020 fact sheet.” from https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf

  • Toggas, S. M., Masliah, E., Rockenstein, E. M., Rall, G. F., Abraham, C. R., & Mucke, L. (1994). Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature, 367(6459), 188–193.

    Article  Google Scholar 

  • Trickey, A., M. T. May, J.-J. Vehreschild, N. Obel, M. J. Gill, H. M. Crane, C. Boesecke, S. Patterson, S. Grabar, C. Cazanave, M. Cavassini, L. Shepherd, A. d. A. Monforte, A. van Sighem, M. Saag, F. Lampe, V. Hernando, M. Montero, R. Zangerle, A. C. Justice, T. Sterling, S. M. Ingle and J. A. C. Sterne (2017). “Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies.” The Lancet HIV 4(8): e349-e356.

    Google Scholar 

  • Turner, R. S., Chadwick, M., Horton, W. A., Simon, G. L., Jiang, X., & Esposito, G. (2016). An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement (Amst), 4(1), 1–5.

    Article  Google Scholar 

  • Tyner, J. W., Uchida, O., Kajiwara, N., Kim, E. Y., Patel, A. C., O'Sullivan, M. P., Walter, M. J., Schwendener, R. A., Cook, D. N., Danoff, T. M., & Holtzman, M. J. (2005). CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine, 11(11), 1180–1187.

    Article  Google Scholar 

  • Wang, Y., Santerre, M., Tempera, I., Martin, K., Mukerjee, R., & Sawaya, B. E. (2017). HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging. Neuropharmacology, 117, 364–375.

    Article  Google Scholar 

  • Weintraub, S., Wicklund, A. H., & Salmon, D. P. (2012). The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006171.

    Article  Google Scholar 

  • Wen, A. Y., Sakamoto, K. M., & Miller, L. S. (2010). The role of the transcription factor CREB in immune function. Journal of Immunology, 185(11), 6413–6419.

    Article  Google Scholar 

  • Wesselingh, S. L., Takahashi, K., Glass, J. D., McArthur, J. C., Griffin, J. W., & Griffin, D. E. (1997). Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. Journal of Neuroimmunology, 74(1-2), 1–8.

    Article  Google Scholar 

  • Wojna, V., Skolasky, R. L., Hechavarria, R., Mayo, R., Selnes, O., McArthur, J. C., Melendez, L. M., Maldonado, E., Zorrilla, C. D., Garcia, H., Kraiselburd, E., & Nath, A. (2006). Prevalence of human immunodeficiency virus-associated cognitive impairment in a group of Hispanic women at risk for neurological impairment. Journal of Neurovirology, 12(5), 356–364.

    Article  Google Scholar 

  • Woods, S. P., Moore, D. J., Weber E., & Grant, I. (2009). Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychology Review, 19(2), 152–168.

    Google Scholar 

  • Yang, X., & Gabuzda, D. (1999). Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway. Journal of Virology, 73(4), 3460–3466.

    Article  Google Scholar 

  • Yuan, N. Y., & Kaul, M. (2021). Beneficial and Adverse Effects of cART Affect Neurocognitive Function in HIV-1 Infection: Balancing Viral Suppression against Neuronal Stress and Injury. Journal of Neuroimmune Pharmacology, 16(1), 90–112.

    Article  Google Scholar 

  • Zheng, J., Thylin, M. R., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y. C., Gelbard, H. A., Shepard, R. B., Swartz, J. M., & Gendelman, H. E. (1999). Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. Journal of Neuroimmunology, 98(2), 185–200.

    Article  Google Scholar 

  • Zhou, F., Liu, X., Gao, L., Zhou, X., Cao, Q., Niu, L., Wang, J., Zuo, D., Li, X., Yang, Y., Hu, M., Yu, Y., Tang, R., Lee, B. H., Choi, B. W., Wang, Y., Izumiya, Y., Xue, M., Zheng, K., & Gao, D. (2019). HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. Journal of Neuroinflammation, 16(1), 71.

    Article  Google Scholar 

  • Zhu, X., Castellani, R. J., Takeda, A., Nunomura, A., Atwood, C. S., Perry, G., & Smith, M. A. (2001). Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mechanisms of Ageing and Development, 123(1), 39–46.

    Article  Google Scholar 

Download references

Acknowledgments

M. Kaul is supported by grants from the National Institutes of Health (NIH), MH087332, MH10533, MH104131, and DA052209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ojeda-Juárez, D., Harahap-Carrillo, I.S., Kaul, M. (2022). Neurodegeneration Associated with HIV-1 in the Era of cART. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_137

Download citation

Publish with us

Policies and ethics