Skip to main content

Advertisement

Log in

An Overview of Genome-Wide Association Studies in Alzheimer’s Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWASs) have revealed a plethora of putative susceptibility genes for Alzheimer’s disease (AD). With the sole exception of the APOE gene, these AD susceptibility genes have not been unequivocally validated in independent studies. No single novel functional risk genetic variant has been identified. In this review, we evaluate recent GWASs of AD, and discuss their significance, limitations, and challenges in the investigation of the genetic spectrum of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148: 1204–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375: 754–760.

    Article  CAS  PubMed  Google Scholar 

  3. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349: 704–706.

    Article  CAS  PubMed  Google Scholar 

  4. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995, 269: 973–977.

    Article  CAS  PubMed  Google Scholar 

  5. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995, 376: 775–778.

    Article  CAS  PubMed  Google Scholar 

  6. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999, 65: 664–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanzi RE. A genetic dichotomy model for the inheritance of Alzheimer’s disease and common age-related disorders. J Clin Invest 1999, 104: 1175–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006, 63: 168–174.

    Article  PubMed  Google Scholar 

  9. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 2007, 68: 613–618.

    Article  CAS  PubMed  Google Scholar 

  10. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993, 90: 1977–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S, et al. DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 2006, 15: 2560–2568.

    Article  CAS  PubMed  Google Scholar 

  12. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007, 39: 168–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JH, Cheng R, Schupf N, Manly J, Lantigua R, Stern Y, et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch Neurol 2007, 64: 501–506.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Poduslo SE, Huang R, Huang J, Smith S. Genome screen of late-onset Alzheimer’s extended pedigrees identifies TRPC4AP by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet 2009, 150B: 50–55.

    Article  CAS  PubMed  Google Scholar 

  15. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 2007, 16: 865–873.

    Article  CAS  PubMed  Google Scholar 

  16. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 2007, 54: 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genom 2008, 1: 44.

    Article  Google Scholar 

  18. Chung SJ, Lee JH, Kim SY, You S, Kim MJ, Lee JY, et al. Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord 2013, 27: 250–257.

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 2008, 65: 45–53.

    Article  PubMed  Google Scholar 

  20. Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet 2009, 84: 35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat Genet 2009, 41: 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 2008, 83: 623–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sherva R, Farrer LA. Power and pitfalls of the genome-wide association study approach to identify genes for Alzheimer’s disease. Curr Psychiatry Rep 2011, 13: 138–146.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009, 41: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  25. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41: 1088–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ertekin-Taner N. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res Ther 2010, 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goring HH, Terwilliger JD, Blangero J. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001, 69: 1357–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010, 303: 1832–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, et al. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS One 2011, 6: e16616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, et al. Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet 2010, 6: e1001130.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010, 68: 270–281.

    Article  CAS  PubMed  Google Scholar 

  32. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011, 43: 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011, 43: 436–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2.

  35. Jun G, Vardarajan BN, Buros J, Yu CE, Hawk MV, Dombroski BA, et al. Comprehensive search for Alzheimer disease susceptibility loci in the APOE region. Arch Neurol 2012, 69: 1270–1279.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, et al. Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 2011, 7: e1001308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013, 45: 1452–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sherva R, Baldwin CT, Inzelberg R, Vardarajan B, Cupples LA, Lunetta K, et al. Identification of novel candidate genes for Alzheimer’s disease by autozygosity mapping using genome wide SNP data. J Alzheimers Dis 2011, 23: 349–359.

    CAS  PubMed  Google Scholar 

  39. Bowirrat A, Friedland RP, Chapman J, Korczyn AD. The very high prevalence of AD in an Arab population is not explained by APOE epsilon 4 allele frequency. Neurology 2000, 55: 731.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, et al. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol 2011, 68: 320–328.

    PubMed  PubMed Central  Google Scholar 

  41. Gaj P, Paziewska A, Bik W, Dabrowska M, Baranowska-Bik A, Styczynska M, et al. Identification of a late onset Alzheimer’s disease candidate risk variant at 9q21.33 in Polish patients. J Alzheimers Dis 2012, 32: 157–168.

    PubMed  Google Scholar 

  42. Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One 2013, 8: e58618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 2013, 309: 1483–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007, 39: 906–913.

    Article  CAS  PubMed  Google Scholar 

  45. Nussbaum RL. Genome-wide association studies, Alzheimer disease, and understudied populations. JAMA 2013, 309: 1527–1528.

    Article  CAS  PubMed  Google Scholar 

  46. Karch CM, Cruchaga C, Goate AM. Alzheimer’s disease genetics: from the bench to the clinic. Neuron 2014, 83: 11–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shulman JM, Chibnik LB, Aubin C, Schneider JA, Bennett DA, De Jager PL. Intermediate phenotypes identify divergent pathways to Alzheimer’s disease. PLoS One 2010, 5: e11244.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS One 2009, 4: e6501.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, et al. Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 2010, 67: 677–685.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stein JL, Hua X, Lee S, Ho AJ, Leow AD, Toga AW, et al. Voxelwise genome-wide association study (vGWAS). Neuroimage 2010, 53: 1160–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, et al. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 2014, 19: 351–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carrasquillo MM, Belbin O, Zou F, Allen M, Ertekin-Taner N, Ansari M, et al. Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Abeta, and Alzheimer’s disease. PLoS One 2010, 5: e8764.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Han MR, Schellenberg GD, Wang LS. Genome-wide association reveals genetic effects on human Aβ42 and tau protein levels in cerebrospinal fluids: a case control study. BMC Neurol 2010, 10: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, et al. Genome-wide association study of CSF biomarkers Aβ1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology 2011, 76: 69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 2013, 78: 256–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hollingworth P, Sweet R, Sims R, Harold D, Russo G, Abraham R, et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Mol Psychiatry 2012, 17: 1316–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 2014, 71: 1394–1404.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol 2013, 70: 1150–1157.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Martinelli-Boneschi F, Giacalone G, Magnani G, Biella G, Coppi E, Santangelo R, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging 2013, 34: 1711 e1717–1713.

  60. Moskvina V, Harold D, Russo G, Vedernikov A, Sharma M, Saad M, et al. Analysis of genome-wide association studies of Alzheimer disease and of Parkinson disease to determine if these 2 diseases share a common genetic risk. JAMA Neurol 2013, 70: 1268–1276.

    PubMed  Google Scholar 

  61. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 2015, 72: 15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jun G, Asai H, Zeldich E, Drapeau E, Chen C, Chung J, et al. PLXNA4 is associated with Alzheimer disease and modulates tau phosphorylation. Ann Neurol 2014, 76: 379–392.

    Article  CAS  PubMed  Google Scholar 

  63. Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff-Radford NR, et al. Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol Aging 2014, 35: 2436–2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marian AJ. Molecular genetic studies of complex phenotypes. Transl Res 2012, 159: 64–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet 2001, 17: 502–510.

    Article  CAS  PubMed  Google Scholar 

  66. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996, 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  67. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000, 405: 847–856.

    Article  CAS  PubMed  Google Scholar 

  68. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010, 11: 446–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature 2009, 461: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010, 42: 565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008, 40: 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum Mol Genet 2009, 18: 3987–3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported by CHINA-CANADA Joint Initiative on Alzheimer’s Disease and Related Disorders (81261120571), the National Basic Research Development Program (973 Program) of China (2011CB504104), Scientific Promoting Project of Beijing Institute for Brain Disorders (BIBDPXM2014_014226_000016), Seed Grant of International Alliance of Translational Neuroscience (PXM2014_014226_000006), Key Medical Professional Development Plan of Beijing Municipal Administration of Hospitals (ZYLX201301), the National Science and Technology Major Project for “Major New Drug Innovation and Development” of the Twelfth 5-year Plan Period of China(2011ZX09307-001-03), the Major Project of the Science and Technology Plan of the Beijing Municipal Science & Technology Commission of China (D111107003111009), the National Key Technology R&D Program in the Eleventh Five-year Plan Period of China (2006BAI02B01), and the Key Project of the National Natural Science Foundation of China (30830045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Jia, J. An Overview of Genome-Wide Association Studies in Alzheimer’s Disease. Neurosci. Bull. 32, 183–190 (2016). https://doi.org/10.1007/s12264-016-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0011-3

Keywords

Navigation