Skip to main content

Advertisement

Log in

β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Amyloid plaques, the hallmark of Alzheimer’s disease (AD), contain fibrillar β-amyloid (Aβ) 1-40 and 1-42 peptides. Herpes simplex virus 1 (HSV-1) has been implicated as a risk factor for AD and found to co-localize within amyloid plaques. Aβ 1-40 and Aβ 1-42 display anti-bacterial, anti-yeast and anti-viral activities. Here, fibroblast, epithelial and neuronal cell lines were exposed to Aβ 1-40 or Aβ 1-42 and challenged with HSV-1. Quantitative analysis revealed that Aβ 1-40 and Aβ 1-42 inhibited HSV-1 replication when added 2 h prior to or concomitantly with virus challenge, but not when added 2 or 6 h after virus addition. In contrast, Aβ 1-40 and Aβ 1-42 did not prevent replication of the non-enveloped human adenovirus. In comparison, antimicrobial peptide LL-37 prevented HSV-1 infection independently of its sequence of addition. Our findings showed also that Aβ 1-40 and Aβ 1-42 acted directly on HSV-1 in a cell-free system and prevented viral entry into cells. The sequence homology between Aβ and a proximal transmembrane region of HSV-1 glycoprotein B suggested that Aβ interference with HSV-1 replication could involve its insertion into the HSV-1 envelope. Our data suggest that Aβ peptides represent a novel class of antimicrobial peptides that protect against neurotropic enveloped virus infections such as HSV-1. Overproduction of Aβ peptide to protect against latent herpes viruses and eventually against other infections, may contribute to amyloid plaque formation, and partially explain why brain infections play a pathogenic role in the progression of the sporadic form of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar J, Shukla D (2009) Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 276:7228–7236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  PubMed Central  PubMed  Google Scholar 

  • Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77:451–459

    Article  CAS  PubMed  Google Scholar 

  • Burton MF, Steel PG (2009) The chemistry and biology of LL-37. Nat Prod Rep 26:1572–1584

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Carty M, Reinert L, Paludan SR, Bowie AG (2014) Innate antiviral signalling in the central nervous system. Trends Immunol 35:79–87

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Disease-a-Month 56:484–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Cribbs DH, Azizeh BY, Cotman CW, LaFerla FM (2000) Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer’s A beta peptide. Biochemistry 39:5988–5994

    Article  CAS  PubMed  Google Scholar 

  • Cupelli K, Stehle T (2011) Viral attachment strategies: the many faces of adenoviruses. Curr Opin Virol 1:84–91

    Article  CAS  PubMed  Google Scholar 

  • De Chiara G, Marcocci ME, Civitelli L, Argnani R, Piacentini R, Ripoli C, Manservigi R, Grassi C, Garaci E, Palamara AT (2010) APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS ONE 5:e13989

    Article  PubMed Central  PubMed  Google Scholar 

  • Denaro FJ, Staub P, Colmer J, Freed DM (2003) Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis. Cell Mol Biol 49:1233–1240

    CAS  PubMed  Google Scholar 

  • Egan KP, Wu S, Wigdahl B, Jennings SR (2013) Immunological control of herpes simplex virus infections. J Neurovirol 19:328–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH (2012) Herpes virus fusion and entry: a story with many characters. Viruses 4:800–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Frasca L, Lande R (2012) Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr Pharm Biotechnol 13:1882–1897

    Article  PubMed  Google Scholar 

  • Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398

    Article  PubMed  Google Scholar 

  • Halverson K, Fraser PE, Kirschner DA, Lansbury PT (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic beta-protein fragments. Biochemistry 29:2639–2644

    Article  CAS  PubMed  Google Scholar 

  • Heldwein KE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF, Wozniak MA (2012) Could antivirals be used to treat Alzheimer’s disease? Future Microbiol 7:307–309

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL, Nussinov R, Lal R (2010) Truncated beta-amyloid peptide channels provide an alternative mechanism for Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci USA 107:6538–6543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jang H, Connelly L, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2013) Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane. J Chem Theory Comput 9:822–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  • Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, Fulop T (2009) Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 17(1):91–103

    CAS  PubMed  Google Scholar 

  • Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF (2008) Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS ONE 3:e3637

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin WR, Wozniak MA, Cooper RJ, Wilcock GK, Itzhaki RF (2002) Herpesviruses in brain and Alzheimer’s disease. J Pathol 197:395–402

    Article  CAS  PubMed  Google Scholar 

  • Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006262

    Article  PubMed Central  PubMed  Google Scholar 

  • Miklossy J (2011) Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 13:e30

    Article  PubMed  Google Scholar 

  • Nemerow GR, Stewart PL, Reddy VS (2012) Structure of human adenovirus. Curr Opin Virol 2:115–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicoll MP, Proença JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson HA, Peers C (2006) Physiological roles for amyloid beta peptides. J Physiol 575:5–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perneczky R, Guo LH, Kagerbauer SM, Werle L, Kurz A, Martin J, Alexopoulos P (2013) Soluble amyloid precursor protein beta as blood-based biomarker of Alzheimer’s disease. Transl Psychiatry 3:e227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piacentini R, Civitelli L, Ripoli C, Marcocci ME, De Chiara G, Garaci E, Azzena GB, Palamara AT, Grassi C (2011) HSV-1 promotes Ca2+-mediated phosphorylation and Aβ accumulation in rat cortical neurons. Neurobiol Aging 32(2323):e13–e26

    PubMed  Google Scholar 

  • Piacentini R, De Chiara G, Li Puma DD, Ripoli C, Marcocci ME, Garaci E, Palamara AT, Grassi C (2014) HSV-1 and Alzheimer’s disease: more than a hypothesis. Front Pharmacol 5:97

    Article  PubMed Central  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  • Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR (2007) Understanding HSV-1 entry glycoproteins. Rev Med Virol 17:205–215

    Article  CAS  PubMed  Google Scholar 

  • Rigamonti A, Lauria G, Mantero V, Salmaggi A (2013) A case of late herpes simplex encephalitis relapse. J Clin Virol 58:269–270

    Article  PubMed  Google Scholar 

  • Russell WC (2009) Adenoviruses: update on structure and function. J Gen Virol 90:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sciacca MF, Kotler SA, Brender JR, Chen J, Lee DK, Ramamoorthy A (2012) Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophys J 103:702–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seeman P, Seeman N (2011) Alzheimer’s disease β-amyloid plaque formation in human brain. Synapse 65:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Smith JG, Wiethoff CM, Stewart PL, Nemerow GR (2010) Adenovirus. Curr Top Microbiol Immunol 343:195–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS ONE 5:e9505

    Article  PubMed Central  PubMed  Google Scholar 

  • Streit WJ, Xue QS (2014) Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 29C:93–96

    Article  Google Scholar 

  • Sun E, He J, Zhuang X (2013) Live cell imaging of viral entry. Curr Opin Virol 3:34–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39:286–298

    Article  PubMed  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    CAS  PubMed Central  PubMed  Google Scholar 

  • White MR, Kandel R, Tripathi S, Condon D, Taubenberger J, Hartshorn KL (2014) Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS ONE 9:e101364

    Article  PubMed Central  PubMed  Google Scholar 

  • WHO report (2013) Dementia: a public health priority. 11 Apr 2013

  • Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB (2007) Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 429:95–100

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MA, Mee AP, Itzhaki RF (2009) Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 217:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MA, Frost AL, Preston CM, Itzhaki RF (2011) Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS ONE 6:e25152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245:417–420

    Article  CAS  PubMed  Google Scholar 

  • Zhao LN, Long H, Mu Y, Chew LY (2012) The toxicity of amyloid β oligomers. Int J Mol Sci 13:7303–7307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-aid from the Canadian Institute of Health Research (CIHR) (No. 106634), the Université de Sherbrooke, and the Research Center on Aging.

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamàs Fülöp Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

10522_2014_9538_MOESM1_ESM.pdf

Fig. S1. Time-dependent replication of HSV-1 and HAd5 in MRC-5 and A549 cells, respectively. MRC-5 and A549 cells were exposed to (A) HSV-1 or (B) HAd5 using an initial 0.01 ID50 per cell. Viral replication was analyzed by real-time PCR at the indicated times. Data are a combination of 2 independent experiments performed in duplicate and are shown as the mean ± SEM. Cp designates the crossing point which corresponds to the number of qPCR cycles needed to detect fluorescence of each sample. Fig. S2. Sequence homology between Aβ 1-42 and a transmembrane region of HSV-1 gB. Amino acid sequence alignment of Aβ 1-42 and a transmembrane region (positions 713 – 763) of HSV-1 gB using Clustal Omega shareware (http://expasy.org/proteomics). Identical amino acid residues are indicated by vertical lines and amino acids possessing similar properties, by dashed vertical lines. Adapted with permission from Cribbs et al. (Biochemistry, 39 (2000) 5988-5,994). Copyright 2000, American Chemical Society. Supplementary material 1 (PDF 117 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgade, K., Garneau, H., Giroux, G. et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16, 85–98 (2015). https://doi.org/10.1007/s10522-014-9538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9538-8

Keywords

Navigation