Skip to main content
Log in

Variation in forest soil fungal diversity along a latitudinal gradient

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

In forest ecosystems, plant communities shape soil fungal communities through the provisioning of carbon. Although the variation in forest composition with latitude is well established, little is known about how soil fungal communities vary with latitude. We collected soil samples from 17 forests, along a latitudinal transect in western China. Forest types covered included boreal, temperate, subtropical and tropical forests. We used 454 pyrosequencing techniques to analyze the soil communities. These data were correlated with abiotic and biotic variables to determine which factors most strongly influenced fungal community composition. Our results indicated that temperature, latitude, and plant diversity most strongly influence soil fungal community composition. Fungal diversity patterns were unimodal, with temperate forests (mid latitude) exhibiting the greatest diversity. Furthermore, these diversity patterns indicate that fungal diversity was highest in the forest systems with the lowest tree diversity (temperate forests). Different forest systems were dominated by different fungal subgroups, ectomycorrhizal fungi dominated in boreal and temperate forests; endomycorrhizal fungi dominated in the tropical rainforests, and non-mycorrhizal fungi were best represented in subtropical forests. Our results suggest that soil fungal communities are strongly dependent on vegetation type, with fungal diversity displaying an inverse relationship to plant diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Barcenas-Moreno G, Gomez-Brandon M, Rousk J, Bååth E (2009) Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol 15:2950–2957

    Article  Google Scholar 

  • Beals EW (1984) Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res 14:55

    Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Chang Biol 12:862–882

    Article  Google Scholar 

  • Brock PM, Doring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181:719–724

    Article  PubMed  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359

    Article  PubMed  Google Scholar 

  • Bueé M, Reich M, Murat C, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveals an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Gao C, Shi NN, Liu YX et al (2013) Host plant genus‐level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol Ecol 22:3403–3414

    Article  Google Scholar 

  • Gilbert GS (2005) The dimensions of plant disease in tropical forests. In: Burslem DRFP, Pinard MA, Hartley S (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge, pp 141–164

    Chapter  Google Scholar 

  • Gilbert GS, Ferrer N, Carranza J (2002) Polypore fungal diversity and host density in a moist tropical forest. Biodivers Conserv 11:947–957

    Article  Google Scholar 

  • Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Gugan JF et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  CAS  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Hršelová H, Chvátalová I, Vosátka M et al (1999) Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprophytic microfungi with soil carbon, nitrogen and phsophorus. Folia Microbiol 44:683–687

    Article  Google Scholar 

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Jones MN, Bradshaw HD (1989) Copper: an alternative to mercury; more effective than zirconium in Kjeldahl digestion of ecological materials. Commun Soil Sci Plant Anal 20:1513–1524

    Article  CAS  Google Scholar 

  • Koljalg U, Larsson K, Abarenkov K, Nilsson RH, Alexander IJ et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Leprince F, Quiquampoix H (1996) Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum. Eur J Soil Sci 47:511–522

    Article  CAS  Google Scholar 

  • Levetin E, Dorsey K (2006) Contribution of leaf surface fungi to the air spora. Aerobiologia 22:3–12

    Article  Google Scholar 

  • Li XD, Coles BJ, Ramsey MH, Thornton I (1995) Sequential extraction of soils for multielement analysis by ICP-AES. Chem Geol 124:109–123

    Article  CAS  Google Scholar 

  • Lim YW, Kim BK, Kim C et al (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881

    Article  PubMed  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land‐use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41

    Article  PubMed  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2012) Arbuscular mycorrhiza maintains nodule function during external NH 4+ supply in Phaseolus vulgaris (L.). Mycorrhiza 22:237–245

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Tedersoo L, Lindahl BD, Kjoller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns T, Larsson K-H, Koljalg U, Kauserud H (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191(2):314–318

    Article  Google Scholar 

  • Nouhra ER, Urcelay C, Longo MS, Fontela S (2012) Differential hypogeous sporocarp production from Nothofagus dombeyi and pumilio forests in southern Argentina. Mycologia 104:145–152

    Google Scholar 

  • Öpik M, Moora M, Liira J, et al (2006) Composition of root‐colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol. 94: 778–790

    Google Scholar 

  • Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  CAS  PubMed  Google Scholar 

  • Peay KG, Baraloto C, Fine PV (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861

    Article  CAS  PubMed  Google Scholar 

  • Peet RK (1974) The measurement of species diversity. Annu Rev Ecol Syst 5:285–307

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Robeson MS, King AJ, Freeman KR, Birky CW, Martin AP et al (2011) Soil rotifer communities are extremely diverse globally but spatially auto correlated locally. Proc Natl Acad Sci 108:4406–4410

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht

    Google Scholar 

  • Setala H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    Article  PubMed  Google Scholar 

  • Steel H, Bert W (2012) Biodiversity of compost mesofauna and its potential as an indicator of the composting process status. Dyn Soil Dyn Plant 5:45–50

    Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K et al (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW et al (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Warcup JH (1951) The ecology of soil fungi. Trans Br Mycol Soc 4:376–399

    Article  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 2003:273–309

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the following national research station for logistic support: Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies (XSTRE), Ailao Shan Station for Forest Ecosystem Research Studies (ASSFERS), Shangri-la Alpine Botanic Garden, Gongga (Minya Konka) Station of Alpine Ecosystem, Qinling Huoditang Located Forest Ecosystem Station, Xijiang Tian Mountain Located Forest Ecosystem Station. We thank X. Tan, Y. Liu, Z. Fang, L. Hou, X. Wang, and W. Cui for assisting field sampling, Y. Fu for soil chemical analyses, O. C. Chan and D. A. Schaefer for designing laboratory analyses, Y. Tang, A. M. Jonathan, A. Peter, D. L. Zai, and Rhett Harrison for critical reviews of this manuscript. This study was supported by grants from Ministry of Science and Technology (MOST) of China (973 Program No. 2012CB416904), National Natural Science Foundation of China (No. 90302013), Natural Science Foundation of Yunnan (2005C0056M), Wang K. C. Foundation, and grants (DEB-0620910, DEB-0218039) from U.S. National Science Foundation. The work was also partially funded by the CG Research Program 6: Forests, Trees and Agroforestry. ADNA sequence data are available via GenBank (accession no. KF411754 - KF412201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Ling Shi or Peter E. Mortimer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 80 kb)

Table S2

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, LL., Mortimer, P.E., Ferry Slik, J.W. et al. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity 64, 305–315 (2014). https://doi.org/10.1007/s13225-013-0270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0270-5

Keywords

Navigation