Skip to main content
Log in

Assessment of soil fungal communities using pyrosequencing

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pyrosequencing, a non-electrophoretic method of DNA sequencing, was used to investigate the extensive fungal community in soils of three islands in the Yellow Sea of Korea, between Korea and China. Pyrosequencing was carried out on amplicons derived from the 5′ region of 18S rDNA. A total of 10,166 reads were obtained, with an average length of 103 bp. The maximum number of fungal phylotypes in soil predicted at 99% similarity was 3,334. The maximum numbers of phylotypes predicted at 97% and 95% similarities were 736 and 286, respectively. Through phylogenetic assignment using BLASTN, a total of 372 tentative taxa were identified. The majority of true fungal sequences recovered in this study belonged to the Ascomycota (182 tentative taxa in 2,708 reads) and Basidiomycota (172 tentative taxa in 6,837 reads). The predominant species of Ascomycota detected have been described as lichen-forming fungi, litter/wood decomposers, plant parasites, endophytes, and saprotrophs: Peltigera neopolydactyla (Lecanoromycetes), Paecilomyces sp. (Sordariomycetes), Phacopsis huuskonenii (Lecanoromycetes), and Raffaelea hennebertii (mitosporicAscomycota). The majority of sequences in the Basidiomycota matched ectomycorrhizal and wood rotting fungi, including species of the Agaricales and Aphyllophorales, respectively. A high number of sequences in the Thelephorales, Boletales, Stereales, Hymenochaetales, and Ceratobasidiomycetes were also detected. By applying high-throughput pyrosequencing, we observed a high diversity of soil fungi and found evidence that pyrosequencing is a reliable technique for investigating fungal communities in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Martínez, V., S. Dowd, Y. Sun, and Y. Allen. 2008. Tagencoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 40, 2762–2770.

    Article  Google Scholar 

  • Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  • Anderson, I.C., C.D. Campbell, and J.I. Prosser. 2003. Diversity of fungi in organic soils under a moorland—Scots pine (Pinus sylvestris L.) gradient. Environ. Microbiol. 5, 1121–1132.

    Article  PubMed  Google Scholar 

  • Andréasson, H., M. Nilsson, B. Budowle, S. Frisk, and M. Allen. 2006. Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int. J. Legal Medicine 120, 383–390.

    Article  Google Scholar 

  • Atkins, S.D. and I.M. Clark. 2004. Fungal molecular diagnostics: a mini review. J. Appl. Genet. 45, 3–15.

    PubMed  Google Scholar 

  • Booth, T. 1971. Distribution of certain soil inhabiting chytrid and chytridiaceous species related to some physical and chemical factors. Can. J. Botany 49, 1743–1755.

    Article  Google Scholar 

  • Brodie, E., S. Edwards, and N. Clipson. 2003. Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol. Ecol. 45, 105–114.

    Article  CAS  PubMed  Google Scholar 

  • Brussaard, L., P.C.d. Ruiter, and G.G. Brown. 2007. Soil biodiversity for agricultural sustainability. Agricul. Ecosyst. Environ. 121, 233–244.

    Article  Google Scholar 

  • Burpee, L.L., L.M. Kaye, L.G. Goulty, and M.B. Lawto. 1987. Suppression of gray snow mold on creeping bentgrass by an isolate of Typhula phacorrhiza. Plant Disease 71, 91–100.

    Article  Google Scholar 

  • Daniels, B.A. 1981. The influence of hyperparasites of vesicular-arbuscular mycorrhizal fungi on growth of citrus. Phytopathology 71, 212–213.

    Google Scholar 

  • De Bellis, T., G. Kernaghan, and P. Widden. 2007. Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia 99, 356–367.

    Article  PubMed  Google Scholar 

  • Edel-Hermann, V., C. Dreumont, A. Perez-Piqueres, and C. Steinberg. 2004. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol. Ecol. 47, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, R.A., B. Rodriguez-Brito, L. Wegley, M. Haynes, M. Breitbart, D.M. Peterson, M.O. Saar, S. Alexander, E.C. Alexander, Jr., and F. Rohwer. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57.

    Article  PubMed  Google Scholar 

  • Edwards, R.A. and F. Rohwer. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, B. and P. Green. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    CAS  PubMed  Google Scholar 

  • Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    CAS  PubMed  Google Scholar 

  • Fryar, S.C. 2002. Fungal succession or sequence of fruit bodies? Fungal Divers. 10, 5–10.

    Google Scholar 

  • Gruber, J.D., P.B. Colligan, and J.K. Wolford. 2002. Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Hum. Genet. 110, 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Hibbett, D.S., M. Binder, J.F. Bischoff, M. Blackwell, P.F. Cannon, O.E. Eriksson, S. Huhndorf, and et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547.

    Article  PubMed  Google Scholar 

  • Huber, J.A., D.B. Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, and M.L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318, 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Isola, D., M. Pardini, F. Varaine, S. Niemann, S. Rusch-Gerdes, L. Fattorini, G. Orefici, and et al. 2005. A pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. J. Microbiol. Methods 62, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Jeewon, R. and K.D. Hyde. 2007. Detection and diversity of fungi from environmental samples: Traditional versus molecular approaches. Advanced techniques in soil microbiology, Springer Berlin Heidelberg, Berlin, Germany.

    Google Scholar 

  • Jonasson, J., M. Olofsson, and H.J. Monstein. 2002. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS. 110, 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K. and H. Toh. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 9, 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.S., B.K. Kim, J.H. Lee, M. Kim, Y.W. Lim, and J. Chun. 2008. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. J. Microbiol. 46, 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk, G.A., S. Gerards, and J.W. Woldendorp. 1997. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl. Environ. Microbiol. 63, 3858–3865.

    CAS  PubMed  Google Scholar 

  • Li, H., S.E. Smith, R.E. Holloway, Y. Zhu, and F.A. Smith. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172, 536–543.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, B.D., K. Ihrmark, J. Boberg, S.E. Trumbore, P. Hogberg, J. Stenlid, and R.D. Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C.A. and D.A. Klein. 1999. Chytridiomycota of little importance in soil?, vol. 65, pp. 662–663, ASM News, USA.

    Google Scholar 

  • Lozupone, C.A. and D.A. Klein. 2002. Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils. Mycologia 94, 411–420.

    Article  CAS  Google Scholar 

  • Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, and et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    CAS  PubMed  Google Scholar 

  • Marshall, M.N., L. Cocolin, D.A. Mills, and J.S. VanderGheynst. 2003. Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J. Appl. Microbiol. 95, 934–948.

    Article  CAS  PubMed  Google Scholar 

  • Miller, S.L. 1995. Functional diversity of fungi. Can. J. Botany 73, S50–S57.

    Article  Google Scholar 

  • Myers, E.W. and W. Miller. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17.

    CAS  PubMed  Google Scholar 

  • O’Brien, H.E., J.L. Parrent, J.A. Jackson, J.M. Moncalvo, and R. Vilgalys. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71, 5544–5550.

    Article  PubMed  Google Scholar 

  • Ogino, S., T. Kawasaki, M. Brahmandam, L. Yan, M. Cantor, C. Namgyal, M. Mino-Kenudson, G.Y. Lauwers, M. Loda, and C.S. Fuchs. 2005. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J. Mol. Diagn. 7, 413–421.

    CAS  PubMed  Google Scholar 

  • Öpik, M., M. Moora, J. Liira, U. Köljalg, M. Zobel, and R. Sen. 2003. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol. 160, 581–593.

    Article  Google Scholar 

  • Retief, J.D. 2000. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243–258.

    CAS  PubMed  Google Scholar 

  • Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, S.H. Daroub, F.A. Camargo, W.G. Farmerie, and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290.

    CAS  PubMed  Google Scholar 

  • Ronaghi, M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi, M. and E. Elahi. 2002. Pyrosequencing for microbial typing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782, 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi, M., M. Uhlen, and P. Nyren. 1998. A sequencing method based on real-time pyrophosphate. Science 281, 363–365.

    Article  CAS  PubMed  Google Scholar 

  • Ross, J.P. and R. Ruttencutter. 1977. Population dynamics of two versicular-arbuscular endomycorrhizal fungi and the role of hyperparasitic fungi. Phytopathology 67, 490–496.

    Article  Google Scholar 

  • Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, S.K., K.L. Wilson, A.F. Meyer, M.M. Gebauer, and A.J. King. 2008. Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb. Ecol. 56, 681–687.

    Article  CAS  PubMed  Google Scholar 

  • Smit, E., P. Leeflang, B. Glandorf, J.D. van Elsas, and K. Wernars. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65, 2614–2621.

    CAS  PubMed  Google Scholar 

  • Sogin, M.L., H.G. Morrison, J.A. Huber, D. Mark Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 12115–12120.

    Article  CAS  PubMed  Google Scholar 

  • Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29, 729–743.

    Article  Google Scholar 

  • van Elsas, J.D., G.F. Duarte, A. Keijzer-Wolters, and E. Smit. 2000. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J. Microbiol. Methods 43, 133–151.

    Article  PubMed  Google Scholar 

  • Waldrop, M.P., D.R. Zak, C.B. Blackwood, C.D. Curtis, and D. Tilman. 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 9, 1127–1135.

    Article  PubMed  Google Scholar 

  • White, H., V.J. Durston, A. Seller, C. Fratter, J.F. Harvey, and N.C.P. Cross. 2004. Detection and estimation of heteroplasmy for mitochondrial mutations using NanoChip and Pyrosequencing technology. J. Medi. Genetics 41, S71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsik Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, Y.W., Kim, B.K., Kim, C. et al. Assessment of soil fungal communities using pyrosequencing. J Microbiol. 48, 284–289 (2010). https://doi.org/10.1007/s12275-010-9369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-9369-5

Keywords

Navigation