Skip to main content
Log in

The endophytic mycobiota of Arabidopsis thaliana

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungal endophytes are receiving increasing attention as resources to improve crop production and ecosystem management. However, the biology and ecological significance of these symbionts remains poorly understood, due to a lack of model systems for more efficient research. In this work, we have analyzed the culturable endophytic mycobiota associated, in the wild, with leaves and siliques of the model plant A. thaliana. We have studied the effect of biotic and abiotic factors in the frequency of fungal endophytes in plant specimens, and in the species composition of the endophytic community. Our results indicate that the frequency of Arabidopsis plants hosting endophytes depends on the time of the year and the phenological stage of the plant, and that the probability of endophyte colonization increases as the life cycle of the plant progresses. The diversity of the endophytic assemblages of natural A. thaliana populations was high, and precipitation and temperature were the two main factors determining the diversity and species composition of the communities. We propose A. thaliana and its endophytes as a model system for an integral approach to the principles governing the endophytic lifestyle, taking advantage of the molecular tools and the abundant knowledge accessible from the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Alcazar R, Parker J (2011) The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci 16:666–675. doi:10.1016/j.tplants.2011.09.001

    Article  PubMed  CAS  Google Scholar 

  • Aly A, Debbab A, Proksch P (2011a) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845. doi:10.1007/s00253-011-3270-y

    Article  PubMed  CAS  Google Scholar 

  • Aly A, Debbab A, Proksch P (2011b) Fifty years of drug discovery from fungi. Fungal Divers 50:3–19. doi:10.1007/s13225-011-0116-y

    Article  Google Scholar 

  • Anderson JT, Mitchell-Olds T (2011) Ecological genetics and genomics of plant defences: evidence and approaches. Funct Ecol 25:312–324. doi:10.1111/j.1365-2435.2010.01785.x

    Article  PubMed  Google Scholar 

  • Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R (2011) Decay, yield loss and associate fungi in stands of grey alder (Alnus incana) in Latvia. Forestry 84:337–348

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66. doi:10.1016/j.fbr.2007.05.003

    Article  Google Scholar 

  • Arnold A, Herre E (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398. doi:10.2307/3761880

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459

    Article  PubMed  Google Scholar 

  • Baynes M, Newcombe G, Dixon L, Castlebury L, O’Donnell K (2012) A novel plant fungal mutualism associated with fire. Fungal Biol 116:133–144

    Article  PubMed  Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Article  PubMed  CAS  Google Scholar 

  • Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11:867–879. doi:10.1038/nrg2896

    Article  PubMed  CAS  Google Scholar 

  • Botella L, Diez J (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18. doi:10.1007/s13225-010-0061-1

    Article  Google Scholar 

  • Boyes D, Zayed A, Ascenzi R, McCaskill A, Hoffman N (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510. doi:10.2307/3871382

    PubMed  CAS  Google Scholar 

  • Braun U, Crous PW, Dugan F, Groenewald JZ, De Hoog GS (2003) Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol Prog 2:3–18

    Article  Google Scholar 

  • Bukovska P, Jelinkova M, Hrselova H, Sykorova Z, Gryndler M (2010) Terminal restriction fragment length measurement errors are affected mainly by fragment length, G+C nucleotide content and secondary structure melting point. J Microbiol Methods 82:223–228

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ahmadinejad N et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    Article  PubMed  CAS  Google Scholar 

  • Caesar AJ, Lartey RT, Caesar-Ton-That T-C (2012) First report of a root and crown disease of the invasive weed Lepidium draba caused by Phoma macrostoma. Plant Dis 96:145

    Article  Google Scholar 

  • Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol Res 110:137–150

    Article  PubMed  CAS  Google Scholar 

  • Cannon PF, Buddie AG, Bridge PD, de Neergaard E, Lubeck M, Askar MM (2012a) Lectera, a new genus of the Plectosphaerellaceae for the legume pathogen Volutella colletotrichoides. MycoKeys 3:23–36

    Article  Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012b) Colletotrichum – current status and future directions. Stud Mycol 73:181–213

    Article  PubMed  CAS  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves - from latent pathogen to mutualistic symbiont. Ecology 69:2–9. doi:10.2307/1943154

    Article  Google Scholar 

  • Carroll G, Carroll F (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Article  Google Scholar 

  • Chaverri P, Castlebury LA, Samuels GJ, Geisera DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27:302–313

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.0. purl.oclc.org/estimates

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Compant S, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214. doi:10.1111/j.1574-6941.2010.00900.x

    PubMed  CAS  Google Scholar 

  • Cook D, Shi L, Gardner D, Pfister J, Grum D (2012) Influence of phenological stage on swainsonine and endophyte concentrations in Oxytropis sericea. J Chem Ecol 38:195–203. doi:10.1007/s10886-012-0067-0

    Article  PubMed  CAS  Google Scholar 

  • Crous PW, Groenewald JZ (2011) Why everlastings don’t last. Persoonia 26:70–84

    Article  PubMed  CAS  Google Scholar 

  • Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM, Palm ME, Marincowitz S, Groenewald JZ (2011) Fungal pathogens of proteaceae. Persoonia 27:20–45

    Article  PubMed  CAS  Google Scholar 

  • Cunnington (2004) Three Neofabraea species on pome fruit in Australia. Australas Plant Pathol 33:453–454

    Article  Google Scholar 

  • Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45–87

    Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924

    Article  PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12. doi:10.1007/s13225-011-0114-0

    Article  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57:45–83. doi:10.1007/s13225-012-0191-8

    Article  Google Scholar 

  • Ehrhardt D, Frommer W (2012) New technologies for 21st century plant science. Plant Cell 24:374–394. doi:10.1105/tpc.111.093302

    Article  PubMed  CAS  Google Scholar 

  • Escoufier Y, Roberts P (1979) Choosing variables and metrics by optimizing the RV coefficient. In: Rustagi JS (ed) Optimizing methods in statistics. Academic, New York, pp 205–219

    Google Scholar 

  • Farr DF, Aime MC, Rossman AY, Palm ME (2006) Species of Colletotrichum on agavaceae. Mycol Res 110:1395–1408

    Article  PubMed  CAS  Google Scholar 

  • Feldman T, Morsy M, Roossinck M (2012) Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Biol 116:465–477. doi:10.1016/j.funbio.2012.01.005

    Article  PubMed  Google Scholar 

  • Freeman S, Horowitz S, Sharon A (2001) Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91:986–992. doi:10.1094/PHYTO.2001.91.10.986

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman J (2009) Microbial community structure and its functional implications. Nature 459:193–199. doi:10.1038/nature08058

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in Central Spain. Fungal Divers 47:29–42. doi:10.1007/s13225-010-0073-x

    Article  Google Scholar 

  • Guo LD, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50(8):997–1003

    Article  PubMed  Google Scholar 

  • Hamilton C, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10. doi:10.1007/s13225-012-0158-9

    Article  Google Scholar 

  • Han G, Feng X, Tian X (2011) Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J Microbiol 49:562–567

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11:3045–3062

    Article  PubMed  Google Scholar 

  • Herre E, Mejia L, Kyllo D, Rojas E, Maynard Z (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558. doi:10.1890/05-1606

    Article  PubMed  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate S, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555. doi:10.1016/j.ympev.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  • Hoffman M, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344. doi:10.1016/j.mycres.2007.10.014

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeogr 29:125–134. doi:10.1046/j.1365-2699.2002.00647.x

    Article  Google Scholar 

  • Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Joyce P, Lakner C, Ronquist F (2008) Bayesian analysis of amino acid substitution models. Philos Trans R Soc B-Biol Sci 363:3941–3953. doi:10.1098/rstb.2008.0175

    Article  CAS  Google Scholar 

  • Hyde K, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW et al (2009) Colletotrichum – names in current use. Fungal Divers 39:147–182

    Google Scholar 

  • Jaschke D, Dugassa-Gobena D, Karlovsky P, Vidal S, Ludwig-Muller J (2010) Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathol 59:100–111

    Article  CAS  Google Scholar 

  • Johnston PR, Johansen RB, Williams AF, Paula Wikie J, Park D (2012) Patterns of fungal diversity in New Zealand Nothofagus forests. Fungal Biol 116:401–412

    Article  PubMed  Google Scholar 

  • Junker C, Draeger S, Schulze B (2012) A fine line-endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol 5:657–662. doi:10.1016/j.funeco.2012.05.002

    Article  Google Scholar 

  • Keurentjes JJB, Angenent G, Dicke M, Molenaar J (2011) Redefining plant systems biology: from cell to ecosystem. Trends Plant Sci 16:183–190. doi:10.1016/j.tplants.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  • Knief C, Ramette A, Frances L, Alonso Blanco C, Vorholt J (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. doi:10.1038/ismej.2010.9

    Article  PubMed  CAS  Google Scholar 

  • Kniskern J, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant-Microbe Interact 20:1512–1522. doi:10.1094/MPMI-20-12-1512

    Article  PubMed  CAS  Google Scholar 

  • Ko Ko TW, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120. doi:10.1007/s13225-011-0130-0

    Article  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921. doi:10.1111/j.1365-313X.2009.04086.x

    Article  PubMed  CAS  Google Scholar 

  • Kuhnert R, Oberkofler I, Peintner U (2012) Fungal growth and biomass development is boosted by plants in snow-covered soil. Microb Ecol 64:79–90

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Larkin BG, Hunt LS, Ramsey PW (2012) Foliar nutrients shape fungal endophyte communities in Western white pine (Pinus monticola) with implications for white-tailed deer herbivory. Fungal Ecol 5:252–260

    Article  Google Scholar 

  • Lawrence DP, Park MS, Pryor BM (2012) Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycol Prog 11:799–815

    Article  Google Scholar 

  • Li H, Wei D, Shen M, Zhou Z (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18. doi:10.1007/s13225-012-0165-x

    Article  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lindner DL, Vasaitis R, Kubartova A, Allmer J, Johannesson H, Banik MT, Stenlid J (2011) Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation. Fungal Ecol 4:449–460

    Article  Google Scholar 

  • Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS (2012) Mycologia 12–207

  • Lu G, Cannon P, Reid A, Simmons C (2004) Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Gruyana. Mycol Res 108:53–63. doi:10.1017/S0953756203008906

    Article  PubMed  CAS  Google Scholar 

  • Lundberg D, Lebeis S, Paredes S, Yourstone S, Gehring J et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86. doi:10.1038/nature11237

    Article  PubMed  CAS  Google Scholar 

  • Macia-Vicente JG, Ferraro V, Burruano S, Lopez-Llorca LV (2012) Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb Ecol 64:668–679

    Article  PubMed  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Mehta YR, Mehta A, Rosato YB (2002) ERIC and REP-PCR banding patterns and sequence analysis of the Internal Transcribed Spacer of rDNA of Stemphylium solani isolates from cotton. Curr Microbiol 44:323–328

    Article  PubMed  CAS  Google Scholar 

  • Micallef S, Shiaris M, Colon Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742. doi:10.1093/jxb/erp053

    Article  PubMed  CAS  Google Scholar 

  • Mirabolfathy M, Groenewald JZ, Crous PW (2011) The occurrence of charcoal disease caused by Biscogniauxia mediterranea on chestnut-leaved oak (Quercus castaneifolia) in the Golestan Forests of Iran. Plant Dis 95:876

    Article  Google Scholar 

  • Mishra A, Gond S, Kumar A, Sharma V, Verma S (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 64:388–398. doi:10.1007/s00248-012-0029-7

    Article  PubMed  Google Scholar 

  • Morales VM, Pelcher LE, Taylor JL (1993) Comparison of the 5.8 s rDNA and internal transcribed spacer sequences of isolates of Leptosphaeria maculans from different pathogenicity groups. Curr Genet 23:490–495

    Article  PubMed  CAS  Google Scholar 

  • Muller LK, Lorch JM, Lindner DL, O’Connor M, Gargas A, Blehert DS (2012) Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia In press

  • Neubert K, Mendgen K, Brinkmann H, Wirsel S (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128. doi:10.1128/AEM.72.2.1118-1128.2006

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg HI, Feiler U, Hagedorn G (2002) Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94:307–320

    Article  PubMed  Google Scholar 

  • Nishimura M, Dangl J (2010) Arabidopsis and the plant immune system. Plant J 61:1053–1066. doi:10.1111/j.1365-313X.2010.04131.x

    Article  PubMed  CAS  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé M-T, Dumas M (2004) A novel arabidopsiscolletotrichum pathosystem for the molecular dissection of plant–fungal interactions. MPMI 17:272–282

    Article  PubMed  Google Scholar 

  • O’Connell R, Thon M, Hacquard S, Amyotte S, Kleemann J et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060. doi:10.1038/ng.2372

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K, Gray LE (1995) Phylogenetic relationships of the soybean sudden death syndrome pathogen Fusarium solani f. sp. phaseoli inferred from rDNA sequence data and PCR primers for its identification. Mol Plant Microbe Interact 8:709–716

    Article  PubMed  Google Scholar 

  • Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391

    Article  PubMed  Google Scholar 

  • Pagan I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, Garcia-Arenal F (2010) Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Phil Trans R Soc B Biol Sci 365:1983–1995

    Article  Google Scholar 

  • Partfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Article  Google Scholar 

  • Peskan Berghofer T, Shahollari B, Giong P, Hehl S, Markert C et al (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plantarum 122:465–477. doi:10.1111/j.1399-3054.2004.00424.x

    Article  CAS  Google Scholar 

  • Pico FX, Mendez Vigo B, Martinez Zapater J, Alonso Blanco C (2008) Natural genetic variation of Arabidopsis thaliana is geographically structured in the Iberian Peninsula. Genetics 180:1009–1021. doi:10.1534/genetics.108.089581

    Article  PubMed  Google Scholar 

  • Porras Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808. doi:10.1080/10635150490522304

    Article  PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7. doi:10.1007/s13225-010-0083-8

    Article  Google Scholar 

  • Qi FH, Jing TZ, Wang ZX, Zhan YG (2009) Fungal endophytes from Acer ginnala Maxim: isolation, identification and their yield of gallic acid. Lett Appl Microbiol 49:98–104

    Article  PubMed  CAS  Google Scholar 

  • Rakotoniriana EF, Munaut F, Decock C, Randriamampionona D, Andriambololoniaina M (2008) Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves. Antonie Van Leeuwenhoek 93:27–36. doi:10.1007/s10482-007-9176-0

    Article  PubMed  CAS  Google Scholar 

  • Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A (2013) Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. Mol Plant Pathol 14:44–57. doi:10.1111/j.1364-3703.2012.00826.x

    Article  PubMed  CAS  Google Scholar 

  • Redman R, Dunigan D, Rodriguez R (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716. doi:10.1046/j.0028-646x.2001.00210.x

    Article  Google Scholar 

  • Redondo C, Cubero J, Melgarejo P (2009) Characterization of Penicillium species by ribosomal DNA sequencing and BOX, ERIC and REP-PCR analysis. Mycopathologia 168:11–22

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Orduna FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74. doi:10.1007/s13225-010-0045-1

    Article  Google Scholar 

  • Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R, White J, Arnold A, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rojas E, Rehner S, Samuels G, Van Bael S, Herre E (2010) Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102:1318–1338. doi:10.3852/09-244

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74. doi:10.1016/j.fbr.2007.05.001

    Article  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113. doi:10.1007/s13225-010-0023-7

    Article  Google Scholar 

  • Salvaudon L, Giraud T, Shykoff J (2008) Genetic diversity in natural populations: a fundamental component of plant-microbe interactions. Curr Opin Plant Biol 11:135–143

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Marquez S, Bills G, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Sanchez Marquez S, Bills GF, Dominguez Acuna L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123. doi:10.1007/s13225-009-0015-7

    Article  Google Scholar 

  • Sanchez Marquez S, Bills G, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297. doi:10.1016/j.funeco.2010.12.001

    Article  Google Scholar 

  • Saunders M, Glenn A, Kohn L (2010) Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl 3:525–537. doi:10.1111/j.1752-4571.2010.00141.x

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. doi:10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust H (1993) Endophytes from herbaceous plants and shrubs - effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA 106:17805–17810

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam V, Dhyani D, Ananthapadmanaban D (2011) First report of Alternaria sp. causing blight on Incarvillea emodi. Australas Plant Dis Notes 6:33–35

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shrestha P, Szaro TM, Bruns TD, Taylor JW (2011) Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Appl Environ Microbiol 77:5490–5504

    Article  PubMed  CAS  Google Scholar 

  • Sieber T (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75. doi:10.1016/j.fbr.2007.05.004

    Article  Google Scholar 

  • Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25:2251–2254

    Article  PubMed  CAS  Google Scholar 

  • Simon UK, Groenewald JZ, Crous PW (2009) Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses. Persoonia 22:49–55

    Article  PubMed  CAS  Google Scholar 

  • Slemmons C, Johnson G, Connell LB (2012) Application of an automated ribosomal intergenic spacer analysis data base for identification of cultured Antarctic fungi. Antarct Sci In press

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co, New York

    Google Scholar 

  • Stone JK (2006) Ecological roles of endophytes in forest ecosystems. Phytopathology 96:S136

    Google Scholar 

  • Sun X, Guo L-D (2008) Apsensculmus, a new genus and its phylogenetic placement based on molecular analysis

  • Sun H, Zhang JZ (2009) Colletotrichum destructivum from cowpea infecting Arabidopsis thaliana and its identity to C. higginsianum. Eur J Plant Pathol 125:459–469

    Article  Google Scholar 

  • Suryanarayanan T, Murali T, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826. doi:10.1139/B02-069

    Article  Google Scholar 

  • Suryanarayanan T, Venkatesan G, Murali T (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci 85:489–493

    Google Scholar 

  • Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30. doi:10.1007/s13225-012-0168-7

    Article  Google Scholar 

  • Tadych M, Bergen M, Johnson Cicalese J, Polashock J, Vorsa N (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116. doi:10.1007/s13225-012-0160-2

    Article  Google Scholar 

  • Taylor J, Jacobson D, Kroken S, Kasuga T, Geiser D (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32. doi:10.1006/fgbi.2000.1228

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi M, Mahesh B, Nalini M, Prakash H, Kini K (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. A. (Combretaceae). World J Microbiol Biotechnol 21:1535–1540. doi:10.1007/s11274-005-7579-5

    Article  Google Scholar 

  • Ter Braak CJF (1992) Permutation versus bootstrap significance tests in multiple regression and ANOVA. In: Jöckel KH, Rothe G, Sendler (eds) Bootstrapping and related techniques. Springer Verlag, Berlin, pp 79–85

    Chapter  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CANODRAW for User’s Guide version 4.5., Ithaca, NY

  • Ter Braak CJF, Verdonschot PFM (1995) Canoncal correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Terhonen E, Marco T, Sun H, Jalkanen R, Kasanen R (2011) The effect of latitude, season and needle-age on the mycota of Scots Pine (Pinus sylvestris) in Finland. Silva Fenn 45:301–317

    Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J For Res 17:213–218. doi:10.1007/s10310-011-0292-3

    Article  Google Scholar 

  • Traw MB, Bergelson J (2010) Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. Curr Opin Plant Biol 13:466–471. doi:10.1016/j.pbi.2010.04.009

    Article  PubMed  CAS  Google Scholar 

  • Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3:366–378

    Article  Google Scholar 

  • Wearn J, Sutton B, Morley N, Gange A (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092. doi:10.1111/j.1365-2745.2012.01997.x

    Article  Google Scholar 

  • Weiss M, Sykorova Z, Garnica S, Riess K, Martos F (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6. doi:10.1371/journal.pone.0016793

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. PCR protocols: a guide of methods and applications 315–322

  • Wilson D (1995) Endophyte - the evolution of a term, and clarification of its use and definition. Oikos 73:274–276. doi:10.2307/3545919

    Article  Google Scholar 

  • Wilson D (2000) Ecology of woody plant endophytes. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652

    Article  PubMed  CAS  Google Scholar 

  • Yurkov AM, Schafer AM, Begerow D (2012) Leucosporidium drummii sp. nov., a member of the Microbotryomycetes isolated from soil. Int J Syst Evol Microbiol 62:728–734

    Article  PubMed  CAS  Google Scholar 

  • Zak JC, Willig MR (2004) Fungal biodiversity patterns. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, USA, pp 59–75

    Chapter  Google Scholar 

  • Zak D, Pregitzer K, Burton A, Edwards I, Kellner H (2011) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecol 4:386–395. doi:10.1016/j.funeco.2011.04.001

    Article  Google Scholar 

  • Zimmerman N, Vitousek P (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci U S A 109:13022–13027. doi:10.1073/pnas.1209872109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Carlos Alonso-Blanco and Fernando García-Arenal for showing us the localization of the wild populations of A. thaliana. We also thank Drs. Fernando García-Arenal, and Mª Ángeles Ayllón, and an anonymous reviewer, for critical review and suggestions for improving the manuscript. Mª Ángeles Portal provided excellent technical assistance. Meteorological data have been gently provided by the Spanish Metereology Agency (AEMET). This work was funded by grants CAM CCG07-UPM/GEN-1899 of DGUI of Comunidad de Madrid and UPM and AGL2008-00818 of Ministerio de Educación y Ciencia of the Spanish Government to Soledad Sacristán.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Sacristán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Bayesian consensus tree of the ITS1-5.8S rRNA-ITS2 sequence region of 120 fungal endophytic isolates of the different populations of A. thaliana. Only bootstrap values above 80 are shown. (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, E., Alonso, Á., Platas, G. et al. The endophytic mycobiota of Arabidopsis thaliana . Fungal Diversity 60, 71–89 (2013). https://doi.org/10.1007/s13225-012-0219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0219-0

Keywords

Navigation