Skip to main content
Log in

Canonical correspondence analysis and related multivariate methods in aquatic ecology

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Canonical correspondence analysis (CCA) is a multivariate method to elucidate the relationships between biological assemblages of species and their environment. The method is designed to extract synthetic environmental gradients from ecological data-sets. The gradients are the basis for succinctly describing and visualizing the differential habitat preferences (niches) of taxavia an ordination diagram. Linear multivariate methods for relating two set of variables, such as two-block Partial Least Squares (PLS2), canonical correlation analysis and redundancy analysis, are less suited for this purpose because habitat preferences are often unimodal functions of habitat variables. After pointing out the key assumptions underlying CCA, the paper focuses on the interpretation of CCA ordination diagrams. Subsequently, some advanced uses, such as ranking environmental variables in importance and the statistical testing of effects are illustrated on a typical macroinvertebrate data-set. The paper closes with comparisons with correspondence analysis, discriminant analysis, PLS2 and co-inertia analysis. In an appendix a new method, named CCA-PLS, is proposed that combines the strong features of CCA and PLS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. TREE 8:356–361.

    Google Scholar 

  • Anderson, N. J., T. Korsman and I. Renberg, 1994. Spatial heterogeneity of diatom stratigraphy in varved and non-varved sediments of a small, boreal-forest lake. Aquat. Sci. 56:40–58.

    Google Scholar 

  • Anderson, N. J., B. Rippey and C. E. Gibson, 1992. A comparison of sedimentary and diatominferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253:357–366.

    Google Scholar 

  • Austin, M. P. and M. J. Gaywood, 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. J. Veg. Sci. 5:473–482.

    Google Scholar 

  • Austin, M. P., A. O. Nicholls, M. D. Doherty and J. A. Meyers, 1994. Determining species response functions to an environmental gradient by means of aβ-function. J. Veg. Sci. 5:215–228.

    Google Scholar 

  • Bakker, C., P. M. J. Herman and M. Vink, 1990. Changes in seasonal succession of phytoplankton induced by the storm-surge barrier in the Oosterschelde (S. W. Netherlands). J. Plankton Res. 12:947–972.

    Google Scholar 

  • Barker, P., 1994. Book review of “H. van Dam (Editor). Twelfth International Diatom Symposium. Kluwer, Academic Publ. Dordrecht”. Eur. J. Phycol. 29:281–283.

    Google Scholar 

  • Birks, H. J. B., S. Juggins and J. M. Line, 1990a. Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason B. J. (ed.), The Surface Waters Acidification Programme, Cambridge University Press, Cambridge, pp. 301–313.

    Google Scholar 

  • Birks H. J. B., J. M. Line, S. Juggins, A. C. Stevenson and C. J. F. ter Braak, 1990b. Diatoms and pH reconstruction. Phil. Trans. Roy. Soc. London, Ser B 327:263–278.

    Google Scholar 

  • Birks, H. J. B., S. M. Peglar and H. A. Austin, 1994. An annotated bibliography of canonical correspondence analysis and related constrained ordination methods 1986–1993, Botanical Institute, Bergen, Norway, 58 pp.

    Google Scholar 

  • Borcard, D., P. Legendre and P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045–1055.

    Google Scholar 

  • Carnes, B. A. and N. A. Slade, 1982. Some comments on niche analysis in canonical space. Ecology 63:888–893.

    Google Scholar 

  • Carpenter, S. R., T. M. Frost and D. K. T. K. Heisey, 1989. Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology 70:1142–1152.

    Google Scholar 

  • Charles, D. F. and J. P. Smol, 1994. Long-term chemical changes in lakes: quantitative inferences from biotic remains in the sediment record. In: Baker L. (ed.), Environmental Chemistry of Lakes and Reservoirs, American Chemical Society, Washington, pp. 3–31.

    Google Scholar 

  • Chessel, D., J.-D. Lebreton and N. Yoccoz, 1987. Propriétés de l'analyse canonique des correspondances; une illustration en hydrobiologie. Rev. Statist. Appl. 35:55–72.

    Google Scholar 

  • Copp, G. H., 1992. An empirical model for predicting microhabitat of 0+ juvenile fishes in a lowland river catchment. Oecologia 91:338–345.

    Google Scholar 

  • Cumming, B. F., J. P. Smol and H. J. B. Birks, 1992. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to environmental variables. J. Phycol. 28:162–178.

    Google Scholar 

  • de Jong, S. and R. W. Farebrother, 1994. Extending the relationship between ridge regression and continuum regression. Chemometrics Intell. Lab. Syst. 25:179–181.

    Google Scholar 

  • de Jong, S. and C. J. F. ter Braak, 1994. Comments on the PLS kernel algorithm. J. Chemometrics 8:169–174.

    Google Scholar 

  • Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia, Beiheft 64:305–323.

    Google Scholar 

  • Dolédec, S. and D. Chessel, 1994. Co-inertia analysis: an alternative method for studying speciesenvironment relationships. Freshwater Biol. 31:277–294.

    Google Scholar 

  • Ellenberg, H., 1948. Unkrautgesellschaften als Mass für den Säuregrad, die Verdichtung und andere Eigenschaften des Ackerbodens. Ber. Landtech. 4:130–146.

    Google Scholar 

  • Eriksson, L., J. L. M. Hermens, E. Johansson, H. J. M. Verhaar and S. Wold, 1995. Multivariate analysis of aquatic toxicity data. Aquat. Sci. this volume.

  • Escoufier, Y. and P. Roberts, 1979. Choosing variables and metrics by optimizing the RV-coefficient. In: Rustagi J. S. (ed.), Optimizing methods in Statistics, Academic Press, New York, pp. 205–219.

    Google Scholar 

  • Fairchild, G. W. and J. W. Sherman, 1993. Algal periphyton response to acidity and nutrients in softwater lakes: lake comparison vs. nutrient enrichment approaches. J. N. Am. Benthol. Soc. 12:157–167.

    Google Scholar 

  • Frank, I.E. and J. H. Friedman, 1993. A statistical view of some chemometric regression tools (with discussion). Technometrics 35:109–148.

    Google Scholar 

  • Fritz, S. C., S. Juggins and R. W. Batterbee, 1993. Diatom assemblages and ionic characterization of lakes of the northern great plains, North America — a tool for reconstructing past salinity and climate fluctuations. Can. J. Fish. Aquat. Sci. 50:1844–1856.

    Google Scholar 

  • Gabriel, K. R., 1982. Biplot. In: Kotz S. and N. L. Johnson (eds.), Encyclopedia of Statistical Sciences, Vol. 1, Wiley, New York, pp. 263–271.

    Google Scholar 

  • Gabriel, K. R. and C. L. Odoroff, 1990. Biplots in biomedical research. Statist. Med. 9:469–485.

    Google Scholar 

  • Gauch, H. G., 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, 298 pp.

    Google Scholar 

  • Gause, G. F., 1930. Studies on the ecology of the Orthoptera. Ecology 11:307–325.

    Google Scholar 

  • Geladi, P., 1988. Notes on the history and nature of partial least squares (PLS) modelling. J. Chemometrics 2:231–246.

    Google Scholar 

  • Gower, A. M., G. Myers, M. Kent and M. E. Foulkes, 1994. Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshwater Biol. 32:119–221.

    Google Scholar 

  • Grantham, B. A. and B. J. Hann, 1994. Leeches (Annelida, Hirundinea) in the experimental lakes area, Northwestern Ontario, Canada — Patterns of species composition in relation to environment. Can. J. Fish. Aquat. Sci. 51:1600–1607.

    Google Scholar 

  • Green, R. H., 1971. A multivariate statistical approach to the Hutchinsonian niche: bivalve mollucs of central Canada. Ecology 52:543–556.

    Google Scholar 

  • Green, R. H., 1974. Multivariate niche analysis with temporally varying environmental factors. Ecology 55:73–83.

    Google Scholar 

  • Green, R. H., 1979. Sampling design and statistical methods for environmental biologists. Wiley, New York, 257 pp.

    Google Scholar 

  • Greenacre, M. J., 1984. Theory and applications of correspondence analysis, Academic Press, London, 364 pp.

    Google Scholar 

  • Greenacre, M. J., 1989. The Carroll-Green-Schaffer scaling in correspondence analysis: a theoretical and empirical appraisal. J. Marketing Research 26:358–365.

    Google Scholar 

  • Greenace, M. J., 1993. Biplots in correspondence analysis. J. Appl. Statist. 20:251–269.

    Google Scholar 

  • Hawkes, H. A., 1975. River zonation and classification. In: Whitton B. A. (ed.), River Ecology. Studies in ecology, vol. 2, Univ. Calif. Press, pp. 312–374.

  • Heiser, W. J., 1987. Joint ordination of species and sites: the unfolding technique. In: Legendre P. and L. Legendre (eds.), Developments in numerical ecology. Springer-Verlag, Berlin, pp. 189–224.

    Google Scholar 

  • Higler, L. W. G. and F. Repko, 1981. The effects of pollution in the drainage area of a Dutch lowland stream on fish and macro-invertebrates. Verh. Int. Verein. Limnol. 21:1077–1082.

    Google Scholar 

  • Higler, L. W. G. and P.F.M. Verdonschot, in prep. The relation between macro-invertebrates, hydraulics and soil fertilization in two man-made tributaries of a Dutch lowland stream.

  • Hill M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61:237–249.

    Google Scholar 

  • Hill, M. O., 1974. Correspondence analysis: a neglected multivariate method. Appl. Statist. 23:340–354.

    Google Scholar 

  • Hill, M. O., 1979. DECORANA — A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithaca, New York, 52 pp.

    Google Scholar 

  • Hill, M. O. and H. G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:47–58.

    Google Scholar 

  • Höskuldsson, A., 1988. PLS regression methods. J. Chemometrics 2:211–228.

    Google Scholar 

  • Hutchinson, G. E., 1968. When are species necessary? In: Lewontin E. (ed.), Population biology and evolution, Syracuse Univ. Press, Syracuse, N. Y., pp. 177–186.

    Google Scholar 

  • Iwatsubo, S., 1984. The analytical solutions of eigenvalue problem in the case of applying optimal scoring method to some types of data. In: Diday E. (ed.), Data Analysis and Informations III, North Holland, Amsterdam, pp. 31–40.

    Google Scholar 

  • James, F. C. and C. E. McCullach, 1990. Multivariate analysis in ecology and systematics: panacea or Pandora's box. Ann. Rev. Ecol. Syst. 21:129–166.

    Google Scholar 

  • Jones, V. J., S. Juggins and J. C. Ellis-Evans, 1993. The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lakes. Ant. Sci. 5:339–348.

    Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak and O. F. R. van Tongeren, 1995. Data analysis in community and landscape ecology, Cambridge Univesity Press, Cambridge, 299 pp.

    Google Scholar 

  • Kautsky, H. and E. van der Maarel, 1990. Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea. Mar. Ecol. Progr. Ser. 60:169–184.

    Google Scholar 

  • Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming and J. P. Smol, 1992. Assessing trends in fishery resources and lake water aluminium from paleolimnological analyses of siliceous algae. Can. J. Fish. Aquat. Sci. 49:116–127.

    Google Scholar 

  • Krzanowski, W J., 1988. Principles of Multivariate Analysis, Clarendon Press, Oxford.

    Google Scholar 

  • Lebreton, J.-D., D. Chessel, R. Prodon and N. Yoccoz, 1988. L'analyse des relations espèces-milieu par l'analyses canonique des correspondances. I. Variables de milieu quantitatives. Acta Oecol. Gen. 9:53–67.

    Google Scholar 

  • Lebreton, J.-D., D. Chessel, M. Richardot-Coulet and N. Yoccoz, 1988. L'analyse des relations espèces-milieu par l'analyse canonique des correspondances. II. Variables de milieu qualitatives. Acta Oecol. Gen. 9:137–151.

    Google Scholar 

  • Lebreton, J.-D., R. Sabatier, G. Banco and A. M. Bacou, 1991. Principal component and correspondence analysis with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In: Devillers J. and W. Karcher (eds.), Applied Multivariate Analysis in SAR and Environmental Studies, Kluwer, Dordrecht, pp. 85–114.

    Google Scholar 

  • Line, J. M., C. J. F. ter Braak and H. J. B. Birks, 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Palaeolimnol. 10:147–152.

    Google Scholar 

  • Lohmuller, J.-B., 1988. The PLS program system: latent variables path analysis with partial least squares estimation. Mult. Beh. R. 23:125–127.

    Google Scholar 

  • Malmqvist, B. and M. Maki, 1994. Benthic macroinvertebrate assemblages in North Swedish streams — environmentla relationships. Ecography 17:9–16.

    Google Scholar 

  • Manly, B. F. J., 1991. Randomization and Monte Carlo methods in biology, Chapman and Hall, London, 281 pp.

    Google Scholar 

  • Martens, H. and T. Naes, 1989. Multivariate calibration, Wiley, Chichester, 419 pp.

    Google Scholar 

  • McLachlan, G. J., 1992. Discriminant Analysis and Statistical Pattern Recognition, Wiley, New York.

    Google Scholar 

  • Miller, A. J., 1990. Subset Selection in Regression, Champan and Hall, London, 229 pp.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of Ecology 3rd Edition, W. B. Saunders Company, Philadelphia.

    Google Scholar 

  • Økland, R. H. and O. Eilertsen, 1994. Canonical correspondence analysis with variation partitioning: some comments and an applications. J Veg. Sci. 5:117–126.

    Google Scholar 

  • Oksanen, J., 1987. Problems of joint display of species and site scores in correspondence analysis. Vegetatio 72:51–57.

    Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74:2215–2230.

    Google Scholar 

  • Pantle, R. and H. Buck, 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach 96:604.

    Google Scholar 

  • Rao, C. R., 1952. Advanced Statistical Methods in Biometric Research, Wiley, New York.

    Google Scholar 

  • Rao, C. R., 1964. The use and interpretation of principal component analysis in applied research. Sankhya A 26:329–358.

    Google Scholar 

  • Reilly, S. B. and P. C. Fiedler, 1994. Interannual variability of dolphin habitats in the eastern tropical Pacific. 1. Research vessel surveys. Fish. Bull. 92:434–450.

    Google Scholar 

  • Ruse, L. P., 1994. Chironomid microdistribution in gravel of an English chalk river. Freshwater Biol. 32:533–551.

    Google Scholar 

  • Sabatier, R., J.-D. Lebreton and D. Chessel, 1989. Multivariate analysis of composition data accompanied by qualitative variables describing a structure. In: Coppi R. and S. Bolasco (eds.), Multiway data tables, North-Holland, Amsterdam, pp. 341–352.

    Google Scholar 

  • Saris, W. E. and L. H. Stronkhorst, 1984. Causal modelling in nonexperimental research. An introduction to the LISREL approach, Sociometric Research Foundation, Amsterdam.

    Google Scholar 

  • Shelford, V. E., 1911. Ecological succession: stream fishes and the method of physiographic analysis. Biol. Bull. (Woods Hole) 21:9–34.

    Google Scholar 

  • Sládecek, V. E., 1986. Diatoms as indicators of organic pollution. Acta hydrochim. hydrobiol. 14:555–566.

    Google Scholar 

  • Smilauer, P., 1992. CanoDraw User's Guide v. 3.0, Microcomputer Power, Ithaca, NY USA, 118 pp.

    Google Scholar 

  • Smilauer, P., 1994. Exploratory analysis of palaeoecological data using the program CanoDraw. J. Paleolimnol. 12:163–169.

    Google Scholar 

  • Snoeijs, P. J. M., 1989. Effects of increasing water temperatures and flow rates on epilithic fauna in a cooling-water discharge basin. J. Appl. Ecol. 26:935–956.

    Google Scholar 

  • Snoeijs, P. J. M. and I. C. Prentice, 1989. Effects of cooling water discharge on the structure and dynamics of epilithic algal communities in the northern Baltic. Hydrobiologia 184:99–123.

    Google Scholar 

  • Soetaert, K., M. Vincx, J. Wittoeck, M. Tulkens and D. Vangansbeke, 1994. Spatial patterns of Westerschelde meiobenthos. Estuarine Coastal and Shelf Science 39:367–388.

    Google Scholar 

  • Stevenson, A. C., H. J. B. Birks, R. J. Flower and R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18:228–233.

    Google Scholar 

  • Stewart-Oaten, A., W. M. Murdoch and K. P. Parker, 1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67:929–940.

    Google Scholar 

  • Sundbäck, K. and P. Snoeijs, 1991. Effects of nutrient enrichment on microalgal community composition in a coastal shallow-water sediment system: an experimental study. Bot. Mar. 34:341–358.

    Google Scholar 

  • Takane, Y., H. Yanai and S. Mayekawa, 1991. Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56:667–684.

    Google Scholar 

  • ter Braak, C. J. F., 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal reponse model. Biometrics 41:859–873.

    Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.

    Google Scholar 

  • ter Braak, C. J. F., 1987a. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:69–77.

    Google Scholar 

  • ter Braak, C. J. F., 1987b. Ordination. In: Jongman R. H. G., C. J. F. ter Braak and O. F. R. van Tongeren (eds.), Data analysis in communityy and landscape ecology, Pudoc, Wageningen (reprinted by Cambridge University Press, Cambridge, 1995), pp. 91–173.

    Google Scholar 

  • ter Braak, C. J. F., 1988a. Partial canonical correspondence analysis. In: Bock H. H. (ed.), Classification and related methods of data analysis, North-Holland, Amsterdam, pp. 551–558.

    Google Scholar 

  • ter Braak, C. J. F., 1988b. CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Report LWA-88-02, Agricultural Mathematics Group, Wageningen, 95 pp.

    Google Scholar 

  • ter Braak, C. J. F., 1990a. Interpreting canonical correlation analysis through biplots of structural correlations and weights. Psychometrika 55:519–531.

    Google Scholar 

  • ter Braak, C. J. F., 1990b. Update notes: CANOCO version 3.1, Agricultural Mathematics Group, Wageningen, 35 pp.

    Google Scholar 

  • ter Braak, C. J. F., 1992. Permutation versus bootstrap significance tests in multiple regression and ANOVA. In: Jöckel K.-H., G. Rothe and W. Sendler (eds.), Bootstrapping and related techniques, Springer Verlag, Berlin, pp. 79–85.

    Google Scholar 

  • ter Braak, C. J. F., 1994. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1:127–140.

    Google Scholar 

  • ter Braak, C. J. F., 1995a. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-Nearest Neighbours, PLS and WA-PLS) and classical approaches. Chemometrics Intell. Lab. Syst. 28:165–180.

    Google Scholar 

  • ter Braak, C. J. F., 1995 b. Canonical community ordination. Part II: The correspondence analysis family. in prep.

  • ter Braak, C. J. F. and S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502.

    Google Scholar 

  • ter Braak, C. J. F., S. Juggins, H. J. B. Birks and H. Van der Voet, 1993. Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for speciesenvironment calibration. In: Patil G. P. and C. R. Rao (eds.), Multivariate Environmental Statistics, North-Holland, Amsterdam, pp. 525–560.

    Google Scholar 

  • ter Braak, C. J. F. and C. W. N. Looman, 1994. Biplots in reduced-rank regression. Biom. J. 36:983–1003.

    Google Scholar 

  • ter Braak, C. J. F. and I. C. Prentice, 1988. A theory of gradient analysis. Adv. ecol. res. 18:271–317.

    Google Scholar 

  • ter Braak, C. J. F. and H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223.

    Google Scholar 

  • Underwood, A. J., 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161:145–178.

    Google Scholar 

  • van Nes, E. H. and H. Smit, 1993. Multivariate analysis of macrozoobenthos in Lake Volkerak-Zoommeer (the Netherlands): changes in an estuary before and after closure. Achiv. Hydrobiol. 127:185–203.

    Google Scholar 

  • Verdonschot, P. F. M., 1989. The role of oligochaetes in the management of waters. Hydrobiologia 180:213–227.

    Google Scholar 

  • Verdonschot, P. F. M. and C. J. F. ter Braak, 1994. An experimental manipulation of oligochaete communities in mesocosms treated with chlorpyrifos or nutrient additions: multivariate analysis with Monte Carlo permutation tests. Hydrobiologia 278:251–266.

    Google Scholar 

  • von Tümpling, W., 1966. Über die statistische Sicherheit soziologischer Methoden in der biologischen Gewässeranalyse. Limnologica (Berlin) 4:235–244.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom and H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48:975–987.

    Google Scholar 

  • Washington, H. G., 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Res. 18:653–694.

    Google Scholar 

  • Whittaker, R. H., S. A. Levin and R. B. Root, 1973. Niche, habitat and ecotope. Amer. Nat. 107:321–338.

    Google Scholar 

  • van Wijngaarden, R. P. A., P. J. van den Brink, J. H. Oude Voshaar and P. Leeuwangh, 1995. Ordination techniques for analysing response of biological communities to toxic stress in experimental ecosystems. Ecotoxicol. 4:61–77.

    Google Scholar 

  • Wold, H., 1982. Soft modeling: the basic design and some extensions. In: Joreskog K. G. and H. Wold (eds.), Systems under indirect observations II, North-Holland, Amsterdam, pp. 1–54.

    Google Scholar 

  • Zelinka, M. and P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Arch. Hydrobiol. 57:389–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Braak, C.J.F., Verdonschot, P.F.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Science 57, 255–289 (1995). https://doi.org/10.1007/BF00877430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877430

Key words

Navigation