Skip to main content

Advertisement

Log in

Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Inquilinus limosus strain KB3, isolated from marine sediment in the south of Thailand, was used to produce a biosurfactant from a mineral salts medium (MSM) with palm oil decanter cake (PODC) as a carbon source. It was found that cellular growth and biosurfactant production in MSM were greatly affected by the medium components. I. limosus KB3 was able to grow and to produce surfactant reducing the surface tension of medium to 28.2 mN/m and giving a crude surfactant concentration of 5.13 g/l after 54 h. The biosurfactant obtained was found to reduce the surface tension of pure water to 25.5 mN/m with the critical micelle concentration of 9 mg/l, and retained its properties during exposure to elevated temperatures (121 °C), high salinity (12 % NaCl), and a wide range of pH values. Chemical characterization by FT-IR, NMR, and ESI-MS revealed that the biosurfactant has a lipopeptide composition with molecular mass (m/z) of 1,032. The biosurfactant was capable of forming stable emulsions with various hydrocarbons and had the ability to enhance oil recovery, PAHs solubility, and antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Aboulwafa AM, Hassouna NAH (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:305–325

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa Isolate Bs20. Appl Biochem Biotechnol 157:329–345

    Article  PubMed  Google Scholar 

  • Anderson RC, Yu PK (2005) Factors affecting the antimicrobial activity of ovine-dervied cathelicidins aginst Escherichia coli O157:H7. Int J Antimicrob Ag 25:205–210

    Article  CAS  Google Scholar 

  • Aniszewski E, Peixoto SR, Mota FF, Leite SGF, Rosado SA (2010) Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmium and zinc from hazardous industrial residue. Braz J Microbiol 41:235–245

    Article  PubMed  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  PubMed  CAS  Google Scholar 

  • Barber WP, Stuckey DC (2000) Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Water Res 10:2413–2422

    Article  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    PubMed  CAS  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288

    Article  Google Scholar 

  • Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sokmen A, Akpulat HA (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–220

    Article  PubMed  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33

    Article  PubMed  CAS  Google Scholar 

  • Chen HL, Juang RS (2008) Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochem Eng J 38:39–46

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresource Technol 100:1015–1019

    Article  CAS  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Roayaei E, Khodabandeh A (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interf Sci 324:172–176

    Article  CAS  Google Scholar 

  • Gudina EJ, Teixeira JA, Rodrigues LR (2011) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloid Surf B 76:298–304

    Article  Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas sp., isolated from a tropical environment. Chemosphere 61:985–992

    Article  PubMed  CAS  Google Scholar 

  • Intergovernmental oceanographic commission manuals and guide No.13 (1982) Manual for monitoring oil and dissolved/dispersed petroleum hydrocarbons in marine waters and beaches. UNESCO

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technol 99:195–199

    Article  CAS  Google Scholar 

  • Li JL, Chen BH (2009) Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials 2:76–94

    Article  CAS  Google Scholar 

  • Makkar R, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  PubMed  CAS  Google Scholar 

  • Maneerat S (2009) Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol 27:1263–1272

    Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Microbiol 94:736–747

    CAS  Google Scholar 

  • Negi PS, Chauhan AS, Sadia GA, Rohinishree YS, Ramteke RS (2005) Antioxidant and antimicrobial activities of various seabuckthorn (Hippophae rhamnoides L.) seed extracts. Food Chem 92:119–124

    Article  CAS  Google Scholar 

  • Nitschke M, Pastore G (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technol 97:336–341

    Article  CAS  Google Scholar 

  • Obayori O, Ilori M, Adebusoye S, Oyetibo G, Omotayo A, Amund O (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microb Biot 25:1615–1623

    Article  CAS  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  PubMed  CAS  Google Scholar 

  • Saimmai A, Sobhon V, Maneerat S (2011) Molasses a whole medium for bosurfactants production by Bacillus strains and their application. Appl Biochem Biotech 165:315–335

    Article  CAS  Google Scholar 

  • Saimmai A, Sobhon V, Maneerat S (2012a) Mangrove sediment, a new source of potential biosurfactant producing bacteria. Ann Microbiol. doi:10.1007/s13213-012-0424-9

  • Saimmai A, Sobhon V, Maneerat S (2012b) Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Ann Microbiol 62:391–402

    Article  CAS  Google Scholar 

  • Santos AS, Sampaio AP, Vasquez GS, Anna LMS Jr, Pereira N, Freire DM (2002) Evaluation of different carbon and nitrogen sources in the production of rhamnolipids by a strain of Pseudomonas. Appl Biochem Biotechnol 98:1025–1035

    Article  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    Article  CAS  Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. J Environ Health Sci Eng 2:6–12

    Google Scholar 

  • Tang JS, Gao H, Hong K, Yu Y, Jiang MM, Lin HP, Ye WC, Yao XS (2007) Complete assignments of 1H- and 13C-NMR spectral data of nine surfactin isomers. Magn Reson Chem 45:792–796

    Article  PubMed  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2001) Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technol 102:772–778

    Article  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramaniam T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microb Biot 24:917–925

    Article  CAS  Google Scholar 

  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technol 99:1157–1164

    Article  CAS  Google Scholar 

  • Yahya A, Sye CP, Ishola TA, Suryanto H (2010) Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresource Technol 101:8736–8741

    Article  CAS  Google Scholar 

  • Zhou M, Rhue RD (2000) Screening commercial surfactants suitable for remeditating DNAPL source zones by solubility. Environ Sci Technol 34:1985–1990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Phuket Rajabhat University for providing a scholarship to A.S. This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and the Postdoctoral Fellowship from Prince of Songkla University. The work was also funded by the Graduate School, Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atipan Saimmai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saimmai, A., Udomsilp, S. & Maneerat, S. Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. Ann Microbiol 63, 1327–1339 (2013). https://doi.org/10.1007/s13213-012-0592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0592-7

Keywords

Navigation