Skip to main content
Log in

Characterization of Rhamnolipid Produced by Pseudomonas aeruginosa Isolate Bs20

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20 is viscous sticky oily yellowish brown liquid with a fruity odor. It showed solubility at aqueous pH > 4 with optimum solubility at pH 7–7.5 and freely soluble in ethyl acetate. This biosurfactant has a very high surface activity as it could lower the surface tension of water to 30 mN/m at about 13.4 mg/L, and it exhibited excellent stabilities at high temperatures (heating at 100°C for 1 h and autoclaving at 121°C for 10 min), salinities (up to 6% NaCl), and pH values (up to pH 13). The produced biosurfactant can be used in the crude form either as cell-free or cell-containing culture broth of the grown bacteria, since both preparations showed high emulsification indices ranged between 59% and 66% against kerosene, diesel, and motor oil. These characters make the test rhamnolipid a potential candidate for use in bioremediation of hydrocarbon-contaminated sites or in the petroleum industry. High-performance thin-layer chromatography densitometry revealed that the extracted rhamnolipid contained the two most active rhamnolipid homologues dirhamno dilipidic rhamnolipid and monorhamno dilipidic rhamnolipid at 44% and 56%, respectively, as compared to 51% and 29.5%, respectively, in a standard rhamnolipid preparation. The nature and ratio of these two rhamnolipid homologues showed to be strain dependent rather than medium-component dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hardegger, M., Koch, T. A. K., Ochsner, U. A., Fiechter, A., & Reiser, J. (1994). Applied and Environmental Microbiology, 60, 3679–3687.

    CAS  Google Scholar 

  2. Mulligan, C. N., & Gibbs, B. F. (1993). In N. Kosaric (Ed.), Biosurfactants (pp. 339–345). New York: Marcel Dekker.

    Google Scholar 

  3. Reiser, J., Koch, A. K., Ochsner, U. A., & Fiechter, A. (1993). In N. Kosaric (Ed.), Biosurfactants: Production, properties, applications (pp. 231–249). New York, NY: Marcel Dekker.

    Google Scholar 

  4. Syldatk, C., & Wagner, F. (1987). In N. Kosaric, W. L. Cairns, & N. C. C. Gray (Eds.), Biosurfactants and biotechnology (pp. 89–120). New York: Marcel Dekker.

    Google Scholar 

  5. Mata-Sandoval, J. C., Karns, J., & Torrents, A. (1999). Journal of Chromatography. A, 864, 211–220.

    Article  CAS  Google Scholar 

  6. Van Dyke, M. I., Couture, P., Brauer, M., Lee, H., & Trevors, J. T. (1993). Canadian Journal of Microbiology, 39, 1071–1078.

    Google Scholar 

  7. Schenk, T., Schuphan, I., & Schmidt, B. (1995). Journal of Chromatography. A, 693, 7–13.

    Article  CAS  Google Scholar 

  8. Zhang, Y., & Miller, R. M. (1994). Applied and Environmental Microbiology, 60, 2101–2106.

    CAS  Google Scholar 

  9. Arino, S., Marchal, R., & Vandecasteele, J.-P. (1996). Applied Microbiology and Biotechnology, 45, 162–168.

    Article  CAS  Google Scholar 

  10. Champion, J. T., Gilkey, J. C., Lamparsk, H., Retterer, J., & Miller, R. M. (1995). Journal of Colloid and Interface Science, 170, 569–574.

    Article  CAS  Google Scholar 

  11. Zhang, Y., & Miller, R. M. (1992). Applied and Environmental Microbiology, 58, 3276–3282.

    CAS  Google Scholar 

  12. Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–633.

    Article  CAS  Google Scholar 

  13. Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2007). Egyptian Journal of Biotechnology, 27, 166–185.

    Google Scholar 

  14. Bodour, A. A., Drees, K. P., & Maier, R. M. (2003). Applied and Environmental Microbiology, 69, 3280–3287.

    Article  CAS  Google Scholar 

  15. Ozdemir, G., Peker, S., & Helvaci, S. S. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234, 135–143.

    Article  CAS  Google Scholar 

  16. Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 53, 224–229.

    CAS  Google Scholar 

  17. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Applied and Environmental Microbiology, 68, 6210–6219.

    Article  CAS  Google Scholar 

  18. Benincasa, M., Abalos, A., Oliveira, I., & Manresa, A. (2004). Antonie Van Leeuwenhoek, 85, 1–8.

    Article  CAS  Google Scholar 

  19. Dubey, K., & Juwarkar, A. (2001). World Journal of Microbiology & Biotechnology, 17, 61–69.

    Article  CAS  Google Scholar 

  20. Clifford, J. S., Ioannidis, M. A., & Legge, R. L. (2007). Journal of Colloid and Interface Science, 305, 361–365.

    Article  CAS  Google Scholar 

  21. Fox, S. L., & Bala, G. A. (2000). Bioresource Technology, 75, 235–240.

    Article  CAS  Google Scholar 

  22. Sen, R., & Swaminathan, T. (2005). Process Biochemistry, 40, 2953–2958.

    Article  CAS  Google Scholar 

  23. Turkovskaya, O. V., Dmitrieva, T. V., & Muratova, A. Y. (2001). Applied Biochemistry and Microbiology, 37, 71–75.

    Article  CAS  Google Scholar 

  24. Bonilla, M., Olivaro, C., Corona, M., Vazquez, A., & Soubes, M. (2005). Journal of Applied Microbiology, 98, 456–463.

    Article  CAS  Google Scholar 

  25. Helvaci, S. S., Peker, S., & Ozdemir, G. (2004). Colloids and Surfaces. B, Biointerfaces, 35, 225–233.

    Article  CAS  Google Scholar 

  26. Vogt Singer, M. E., & Finnerty, W. R. (1990). Canadian Journal of Microbiology, 36, 741–745.

    Article  Google Scholar 

  27. Matsufuji, M., Nakata, K., & Yoshimoto, A. (1997). Biotechnology Letters, 19, 1213–1215.

    Article  CAS  Google Scholar 

  28. Haba, E., Pinazo, A., Jauregui, O., Espuny, M. J., Infante, M. R., & Manresa, A. (2003). Biotechnology and Bioengineering, 81, 316–322.

    Article  CAS  Google Scholar 

  29. Parkinson, M. (1985). Biotechnology Advances, 3, 65–83.

    Article  CAS  Google Scholar 

  30. Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Biotechnology Progress, 21, 1593–1600.

    Article  CAS  Google Scholar 

  31. Takeyama, H., Wada, M., & Matsunaga, T. (2002). Applied Biochemistry and Biotechnology, 98–100, 319–326.

    Article  Google Scholar 

  32. Bognolo, G. (1999). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152, 41–52.

    Article  CAS  Google Scholar 

  33. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Salam M. Awada (AgSciTech, Logan, UT, USA) for kindly supplying the standard rhamnolipid and Dr. Anas M. Abdel-Mawgoud (ARCMP, NODCAR, Ministry of Health, Cairo, Egypt) for technical support and help in HPTLC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mabrouk Aboulwafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Mawgoud, A.M., Aboulwafa, M.M. & Hassouna, N.AH. Characterization of Rhamnolipid Produced by Pseudomonas aeruginosa Isolate Bs20. Appl Biochem Biotechnol 157, 329–345 (2009). https://doi.org/10.1007/s12010-008-8285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8285-1

Keywords

Navigation