Skip to main content
Log in

Enhanced production of xylanase by Fusarium sp. BVKT R2 and evaluation of its biomass saccharification efficiency

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Growth of Fusarium sp. BVKT R2, a potential isolate of forest soils of Eastern Ghats on birchwood xylan in mineral salts medium (MSM) under un-optimized conditions of 30 °C, pH of 5.0, 150 rpm and inoculum size of 5 agar plugs for 7 days, yielded titer of 1290 U/mL of xylanase (EC 3.2.1.8). The effect of various operating parameters such as different substrates and their concentration, additional carbon and nitrogen sources, incubation temperature, initial pH, agitation and inoculum size on the production of xylanase by Fusarium sp. BVKT R2 was studied in shake flask culture by one factor at a time approach. The same culture exhibited higher production of xylanase (4200 U/mL) when grown on birch wood xylan in MSM under optimized conditions with an additional carbon source—sorbitol (1.5%) nitrogen source—yeast extract (1.5%) temperature of 30 °C, pH of 5.0, agitation of 200 rpm and inoculum of 6 agar plugs for only 5 days. There was enhancement in xylanase production under optimized conditions by 3.2 folds over yields under un-optimized conditions. Growth of BVKT R2 culture on locally available lignocelluloses—sawdust, rice straw and cotton stalk—in MSM for 5 days released soluble sugars to the maximum extent of 52.76% with respect to sawdust indicating its greater importance in saccharification essential for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelrahim AA, Bayoumi A (2011) Thermostable xylanases production by thermophilic fungi from some lignoce llulosic substrates. J Basic Appl Sci Res 1(12):2777–2785

    Google Scholar 

  • Abdel-Sater MA, El-Said AHM (2001) Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. Int Biodeterior Biodegrad 47:15–21

    Article  CAS  Google Scholar 

  • Aditi K, Ray RR (2014) Effect of salic in on induction and carbon catabolite repression of endoxylanase synthesis in MTCC 10889. Chem Pap 68(4):451–456

    Google Scholar 

  • Altaf SA, Umar DM, Muhammad MS (2010) Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. World Appl Sci J 8:47–49

    CAS  Google Scholar 

  • Altaf SA, Sughra MG, Nasreen K, Umar DM, Sher MM, Noor-e-Saba KM, Fariha RK, Lu C (2016) Characterization of crude xylanase produced by edible mushroom Pleurotus eryngii. J Bioprocess Biotech 6(2):1–6

    Google Scholar 

  • Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and b-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366

    Article  CAS  Google Scholar 

  • Arabi MIE, Jawhar M, Bakri Y (2011) Effect of additional carbon source and moisture level on xylanase production by Cochliobolus sativus in solid fermentation. Microbiology 80:150–153

    Article  CAS  Google Scholar 

  • Bailey M, Biely J, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270

    Article  CAS  Google Scholar 

  • Bakir U, Yavascaoglu S, Guvenc F, Ersayin A (2001) An endo-b 1,4- xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb Technol 29:328–334

    Article  CAS  Google Scholar 

  • Bakri Y, Mohammed J, Mohammed IEA (2008) Improvement of xylanase production by Cochliobolus sativus in submerged culture. Food Technol Biotechnol 46(1):116–118

    CAS  Google Scholar 

  • Battan B, Sharma JK, Dhiman SS (2006) High level xylanase production by alkalophilic B. pumilus ASH under solid state fermentation. World J Microbiol Biotechnol 22:1281–1287

    Article  CAS  Google Scholar 

  • Beck CI, Scoot D (1974) Enzymes in foods for better or worse. Adv Chem Ser 138:1–17

    Article  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their Industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bhosale HJ, Sukalkar SR, Uzma SMZ, Kadam TA (2011) Production of xylanase by Streptomyces rameus grown on agricultural wastes. Biotechnol Bioinf Bioeng 1(4):505–512

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:288–290

    Article  Google Scholar 

  • Carmona EC, Fialho MB, Buchgnani EB, Coelho GD, Brocheto-Braga MR, Jorge JA (2005) Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochem 40:359–364

    Article  CAS  Google Scholar 

  • Chakdar H, Kumar M, Pandiyan K, Singh A, Nanjappan K, Kashyap PL, Srivastava AK (2016) Bacterial xylanases: biology to biotechnology. 3 Biotech 6(2):150

    Article  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Damiano VB, Bocchini DA, Gomes E, Da Silva R (2003) Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of eucalyptus Kraft pulp. World J Microbiol Biotechnol 19:139–144

    Article  CAS  Google Scholar 

  • Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G, Chambon C, Yeoman CJ, Berg Miller ME, Fields CJ, Martens E, Terrapon N, Henrissat B, White BA, Moson P (2016) Xylan degradation by the human gut Bacteroides xylanisolvens XB1AT involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17:326

    Article  Google Scholar 

  • Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269. doi:10.1016/j.carbpol.2013.08.045

    Article  CAS  Google Scholar 

  • de Alencar Guimaraes NC, Sorgatto M, Peixoto-Nogueira S de C, Betini JHA, Zanoelo FF, Marques MR, Lourdes M de, Moraes T de, Polizeli, Giannesi GC (2013) Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agro industrial residues as substract. Springer Plus 2:380

  • Dhillon A, Gupta JK, Jauhari BM, Khanna SA (2000) A cellulase poor, thermostable, alkali-tolerant xylanase produced by Bacillus circulans AB16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour Technol 73:273–277

    Article  CAS  Google Scholar 

  • Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17

    Article  CAS  Google Scholar 

  • Dodd D, Mackie RI, Cann IKO (2011) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 79(2):292–304

    Article  CAS  Google Scholar 

  • Fadel M (2001) Production physiology of cellulase and β-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions. J Biol Sci 1(5):401–411

    Article  Google Scholar 

  • Garai D, Kumar V (2013) Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech 3(2):127–136

    Article  Google Scholar 

  • Garg N, Mahatma KK, Kumar A (2010) Xylanase: applications and biotechnological aspects. Lambert Academic Publishing AG & Co. KG, Saarbrucken

    Google Scholar 

  • Gilbert HJ, Hazelwood GP (1999) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    Article  Google Scholar 

  • Goyal M, Kalra KL, Sareen VK, Soni G (2008) Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Braz J Microbiol 39:535–541

    Article  Google Scholar 

  • Gupta VK, Rajeeva G, Santosh KY, Nandan SD (2009) Optimization of xylanase production from free and immobilized cells of Fusarium solani F7. BioResources 4(3):932–945

    CAS  Google Scholar 

  • Haas H, Herfurth E, Stoffler G, Redl B (1992) Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochem Biophys Acta 1117:279–286

    Article  CAS  Google Scholar 

  • Haltrich D, Preiss M, Steiner W (1993) Optimization of a culture medium for increased xylanase production by a wild strain of Schizophyllum commune. Enzyme Microb Technol 15:854–860

    Article  CAS  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupaneie S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161

    Article  CAS  Google Scholar 

  • Harshvardhan K, Mishra A, Jha B (2013) Purification and characterization of cellulase from a marine Bacillus sp. H1666: a potential agent for single step saccharification of seaweed biomass. J Mol Catal B Enzym 93:51–56

    Article  CAS  Google Scholar 

  • Hoq MM, Carsten H, Wolf-Dieter D (1994) Cellulase-free xylanase by Thermomyces lanuginosus RT9: effect of agitation, aeration, and medium components on production. J Biotechnol 37(1):4958

    Article  Google Scholar 

  • Irfan M, Muhammad N, Quratulain S (2014) One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Rad Res Appl Sci 7:317–326

    Google Scholar 

  • Isil S, Nilufer A (2005) Xylanase production from T. harzianum 1073 D3 with alternative carbon and nitrogen sources. Food Technol Biotechnol 43:37–40

    Google Scholar 

  • Jiang Z, Cong Q, Yan Q, Kumar N, Du X (2010) Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem 120:457–462

    Article  CAS  Google Scholar 

  • Joshi C, Khare SK (2012) Induction of xylanase in thermophilic fungi Scytalidium thermophilum and Sporotrichum thermophile. Braz Arch Biol Technol 55:21–27. doi:10.1590/s1516-89132012000100003

    Article  CAS  Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid state fermentation of wheat straw. Bioresour Technol 86:207–213

    Article  CAS  Google Scholar 

  • Kheng PP, Omar IC (2005) Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state fermentation using palm kernel cake (PKC) as substrate. J Sci Technol 27(2):325–336

    CAS  Google Scholar 

  • Kiddinamoorthy J, Anceno JA, Haki DG, Rakshit SK (2008) Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J Microbiol Biotechnol 24:605–612

    Article  CAS  Google Scholar 

  • Knob A, Carmona EC (2008) Xylanase production by Penicillium sclerotiorum and its characterization. World Appl Sci J 4(2):277–283

    Google Scholar 

  • Kuhad RC, Manchanda M, Singh A (1998) Optimization of xylanase production by a hyperxylanolytic mutant strain of F. oxysporum. Process Biochem 33:641–647

    Article  CAS  Google Scholar 

  • Kumar KS, Ayyachamy M, Kugen P, Suren S (2009) Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng 107(5):494–498

    Article  CAS  Google Scholar 

  • Latif F, Asgher M, Saleem R, Akram A, Legge R (2006) Purification and characterization of xylanase produced by C. thermophile NIBGE. World J Microbiol Biotechnol 22:45–50

    Article  CAS  Google Scholar 

  • Laxmi GS, Sathish T, Subba Rao C, Brahmaiah P, Hymavathi M, Prakasham RS (2008) Palm fiber as novel substrate for enhanced xylanase production by isolated Aspergillus sp. RSP-6. Curr Trends Biotechnol Pharm 2(3):447–455

    CAS  Google Scholar 

  • Lejeune R, Baron GV (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Appl Microbiol Biotechnol 43:249–258

    Article  CAS  Google Scholar 

  • Li Y, Lin J, Meng D, Lu J, Gu G, Mao Z (2006) Effect of pH, cultivation time and substrate concentration on the endoxylanase production by Aspergillus awamori ZH-26 under submerged fermentation using central composite rotary design. Food Technol Biotechnol 44:473–477

    CAS  Google Scholar 

  • Lopes F, Motta F, Andrade CCP, Rodrigues MI, Maugeri-Filho F (2011) Thermo-stable xylanases from non conventional yeasts. Microb Biochem Technol 3(3):36–42

    CAS  Google Scholar 

  • Loveleen KS, Maninder A, Sehgal VK (2010) Use of Scopulariopsis acremonium for the production of cellulase and xylanase through submerged fermentation. Afr J Microbiol Res 4(14):1506–1510

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol regent. J Gen Microbiol 131:3017–3027

    Google Scholar 

  • Mc Cleary BV (1986) Enzymatic modification of plant polysaccharides. Int J Macromole 8:349–354

    Article  CAS  Google Scholar 

  • Milagres AMF, Lacis LS, Prade RA (1993) Characterization of xylanase production by a local isolate of Penicillium janthinellum. Enzyme Microbiol Technol 15:248–253

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of 3,5-dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murthy PS, Naidu MM (2012) Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol 5(2):657–664

    Article  CAS  Google Scholar 

  • Muthezhilan R, Ashok R, Jayalakshmi S (2007) Production and optimization of thermostable alkaline xylanase by Penicillium oxalicum in solid state fermentation. Afr J Microbiol Res 1(2):20–28

  • Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37:71–83

    Article  CAS  Google Scholar 

  • Nair SG, Sindhu R, Shashidhar S (2008) Fungal xylanase production under solid state and submerged fermentation conditions. Afr J Microbiol Res 2:82–86

    Google Scholar 

  • Nakamura S, Ishiguro Y, Nakai R, Wakabayashi K, Aono R, Horikoshi K (1995) Purification of a thermophilic alkaline xylanase from thermophilic Bacillus sp. strain TAR-1. J Mol Catal B Enzym 1:7–15

    Article  CAS  Google Scholar 

  • Neves ML, da Silva MF, Souza-Motta CM, Spier MR, Soccol CR, Porto TS, Moreira KA, Porto AL (2011) Lichtheimia blakesleeana as a new potential procedure of phytase and xylanase. Artic Mol 16:4807–4817

    CAS  Google Scholar 

  • Nikhil B, Adhyaru D, Thakor P (2012) Production of xylanase by Aspergillus flavus FPDN1 on Pearl millet bran: optimization of culture conditions and application in bioethanol production. Int J Res Chem Environ 2(3):204–210

    Google Scholar 

  • Ninawe S, Lal R, Kuhad RC (2006) Isolation of three xylanase-producing strains of actinomycetes and their identification using molecular methods. Curr Microbiol 53(3):178–182

    Article  CAS  Google Scholar 

  • Nochure SV, Roberts MF, Demain AI (1993) True cellulase production by Clostridium thermocellum grown on different carbon sources. Biotechnol Lett 15:641–646

    Article  Google Scholar 

  • Oakley AJ, Heinrich T, Thompson CA, Wilce MCJ (2003) Characterization of a family 11 from Bacillus subtilis B230 used for paper bleaching. Acta Cryst D 59:627–636

    Article  Google Scholar 

  • Okafor UA, Emezue TN, Okochi VI, Onyegeme-Okerenta BN, Nwodo-Chinedu S (2007) Xylanase production by Penicillium chrysogenum (PCL501) fermented on cellulosic wastes. Afr J Biochem Res 1:48–53

    Google Scholar 

  • Otero DM, Cadaval CL, Teixeira LM, Rosa CA, Sanzo AVL, Kalil SJ (2015) Screening of yeasts capable of producing cellulase-free xylanase. Afr J Biotechnol 14(23):1961–1969

    Article  CAS  Google Scholar 

  • Pathak P, Bhardwaj NK, Singh AK (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl Biochem Biotechnol 172:3776–3797

    Article  CAS  Google Scholar 

  • Paul J, Varma AK (1990) Influence of sugars on endoxylanase and bxylosidase activities of Bacillus strain. Biotechnol Lett 12:19–27

    Article  Google Scholar 

  • Petchluan P, Charida P, Nareerat C (2014) Characterization of xylanase and cellulase from Lentinus polychrous Lev. LP-PT-1. Chiang Mai J Sci 41(5.1):1007–1019

    Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Premalatha N, Gopal NO, Jose PA, Anandham R, Kwon SW (2015) Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol 6:1046. doi:10.3389/fmicb.2015.01046

    Article  Google Scholar 

  • Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M (2004) The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem 39:1561–1566

    Article  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441

    Article  CAS  Google Scholar 

  • Rahman AK, Sugitani N, Hatsu M, Takamizawa K (2003) A role of xylanase, α-l-arabinofuranosidase, and xylosidase in xylan degradation. Can J Microbiol 49:58–64

    Article  CAS  Google Scholar 

  • Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of xylanase production through response surface methodology by Fusarium sp. BVKT R2 isolated from forest soil and its application in saccharification. Front Microbiol 7:1450. doi:10.3389/fmicb.2016.01450

    Article  Google Scholar 

  • Ramanjaneyulu G, Praveen Kumar Reddy G, Dileep Kumar K, Rajasekhar Reddy B (2015) Isolation and screening of xylanase producing fungi from forest soils. Int J Curr Microbiol Appl Sci 4:586–591

    Google Scholar 

  • Ramanjaneyulu G, Ramya A, Shanthi Kumari B, Dileep Kumar K, Rajasekhar Reddy B (2016) Xylanase producing microflora in Eastern Ghats of Andhra Pradesh, India. J For Res. doi:10.1007/s11676-016-0305-3

    Google Scholar 

  • Ravichandra K, Yaswanth VVN, Nikhila B, Jamal A, Srinivasa Rao P, Uma A, Ravindrababu V, Prakasham RS (2015) Xylanase production by isolated fungal strain, Aspergillus fumigatus RSP-8 (MTCC 12039): impact of agroindustrial material as substrate. Sugar Tech. doi:10.1007/s12355-014-0357-7

    Google Scholar 

  • Saha BC, Bothast RJ (1999) Enzymology of xylan degradation. ACS Symp Ser 723:167–194

    Article  CAS  Google Scholar 

  • Saha SP, Ghosh S (2014) Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatal Agric Biotechnol 3:188–196

    Google Scholar 

  • Sanghi A, Garg N, Kuhar K, Kuhad RC, Gupta VK (2009) Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources 4:1109–1129

    CAS  Google Scholar 

  • Santhi VS, Bhagat AK, Saranya S, Govindarajan G, Jebakumar SRD (2014) Seaweed (Eucheuma cottonii) associated microorganisms, a versatile enzyme source for the lignocellulosic biomass processing. Int Biodeterior Biodegrad 96:144–151. doi:10.1016/j.ibiod.2014.08.007

    Article  Google Scholar 

  • Sepahy AA, Ghazi S, Sepahy MA (2011) Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG13 fermented on agricultural waste. Enzyme Res. doi:10.4061/2011/593624

    Google Scholar 

  • Simoes MLG, Tauk-Torniseielo SM (2006) Optimization of xylanase biosynthesis by Aspergillus japonicus isolated from a ‘Caatinga’ area in the Brazilian state of Bahia. Afr J Biotechnol 5:1135–1141

    CAS  Google Scholar 

  • Sridevi A, Sandhya A, Ramanjaneyulu G, Narasimha G, Devi PS (2016) Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3 Biotech 6(165):1–7

    Google Scholar 

  • Sun J, Wen F, Si T, Xu JH, Zhao H (2012) Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl Environ Microbiol 78(11):3837–3845

    Article  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    Article  CAS  Google Scholar 

  • Techapu C, Prosesor R (2003) Thermostable and alkaline tolerant microbial cellulose free xylanase produced from agriculture waste. Proc Biochem 38(1):1327–1340

    Article  Google Scholar 

  • Tony C, Charles G, Georges F (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  Google Scholar 

  • Torres JM, Cruz DTE (2013) Production of xylanases by mangrove fungi from the Philippines and their application in enzymatic pretreatment of recycled paper pulps. World J Microbiol Biotechnol 29:645–655

    Article  CAS  Google Scholar 

  • Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054

    Article  CAS  Google Scholar 

  • Wahyuntari B, Mubarik NR, Setyahadi S (2009) Effect of pH, temperature and medium composition on xylanase production by Bacillus sp. AQ-1 and partial characterization of the crude enzyme. Microbiol Indones 3(1):17–22

    Article  Google Scholar 

  • Walsh GA, Power RF, Headon DR (1993) Enzymes in animal feed industry. Trends Biotechnol 11:424–430

    Article  CAS  Google Scholar 

  • Wejse PL, Ingvorsen K, Mortensen KK (2005) Salinity and temperature effects on accessibility of soluble and cross-linked insoluble xylans to endoxylanases. IUBMB Life 57(11):761–763

    Article  CAS  Google Scholar 

  • Wong KKY, Saddler JN (1992) Trichoderma xylanases: their properties and application. In: Visser J, Beldman G, Someren MAK, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 171–186

    Google Scholar 

  • Yan Q, Hao S, Jiang Z, Zhai Q, Chen W (2009) Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. J Mol Catal B Enzym 58:72–77

    Article  CAS  Google Scholar 

  • Yaun Q, Rugyu M (1999) Study on temperature oscillation in production of xylanase by Aspergillus niger. Beijing Hugagong Daxue Xuebao 26:11–16

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial assistance provided by the University Grants Commission, New Delhi, in the form of fellowships to G. Ramanjaneyulu, A. Ramya and K. Dileep Kumar to carry out the above research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramanjaneyulu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanjaneyulu, G., Sridevi, A., Seshapani, P. et al. Enhanced production of xylanase by Fusarium sp. BVKT R2 and evaluation of its biomass saccharification efficiency. 3 Biotech 7, 351 (2017). https://doi.org/10.1007/s13205-017-0977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0977-1

Keywords

Navigation