Skip to main content
Log in

Enzymatic potential of endophytic fungi: xylanase production by Colletotrichum boninense from sugarcane biomass

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi constitute a major part of the still unexplored fungal diversity and have gained interest as new biological sources of natural active compounds, including enzymes. Endophytic fungi were isolated from soybean leaves and initially screened on agar plates for the production of CMCase (carboxymethylcellulase), xylanase, amylase and protease. The highest Enzymatic Indexes (IE) were verified for xylanase (2.14 and 1.31) with the fungi M6-A6P5F2 and M12-A5P3F1.2 and CMCase (1.92 and 1.62) with the fungi M13-A9P2F1 and M12-A5P3F1.2, respectively. The production of xylanase and CMCase by the selected fungi was evaluated in submerged cultivation using beechwood xylan and carboxymethylcellulose (CMC), as well as sugarcane straw and bagasse in different ratios as carbon sources. Both types of lignocellulosic biomass proved to be good inducers of enzymatic activity. The best xylanase producer among the isolates was identified as Colletotrichum boninense. With this fungus, the highest xylanase activity was obtained with a sugarcane straw-bagasse mixture in a 50:50 ratio (383.63 U mL−1), a result superior to that obtained with the use of beechwood xylan (296.65 U mL−1). Regardingthe kinetic behavior of the crude xylanase, there was found optimal pH of 5.0 and optimal temperatures of 50°C and 60°C. At 40°C and 50°C, xylanase retained 87% and 76% of its initial catalytic activity, respectively. These results bring new perspectives on bioprospecting endophytic fungi for the production of enzymes, mainly xylanase, as well as the exploitation of agro-industrial by-products, such as sugarcane straw and bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be shared upon reasonable request.

References

  1. Benedetti ACEP, Costa ED, Aragon CC, Santos AF, Goulart AJ, Attilli-Angeli D, Monti R (2013) Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger. Rev de Cienc Farm Basica e Apl 34:25–31. http://rcfba.fcfar.unesp.br/index.php/ojs/article/view/231

  2. De Aguiar J, Bondancia TJ, Claro PIC, Mattoso LHC, Farinas CS, Marconcini JM (2020) Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. CS Sustainable Chem Eng 8:2287–2299. https://doi.org/10.1021/acssuschemeng.9b06806

    Article  CAS  Google Scholar 

  3. UNICAData (2023) History of sugarcane crushing and sugar and ethanol production: 2021/2022 harvest. https://unicadata.com.br/listagem.php?idMn=4. Accessed 23 Ago 2023

  4. Vandenberghe LPS, Valladares-Diestra KK, Bittencourt GA, Zevallos Torres LA, Vieira S, Karp SG, Sydney EB, De Carvalho JC, ThomazSoccol V, Soccola CR (2022) Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renew Sust Energ Rev 167:112721. https://doi.org/10.1016/j.rser.2022.112721

    Article  CAS  Google Scholar 

  5. Galbe M, Wallberg O (2019) Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12:294. https://doi.org/10.1186/s13068-019-1634-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh R, Pal DB, Alkhanani MF, Almalki AH, Mohammed MY, Haque S, Srivastava N (2022) Prospects of soil microbiome application for lignocellulosic biomass degradation: An overview. Sci Tot Environ 838:155966. https://doi.org/10.1016/j.scitotenv.2022.155966

    Article  CAS  Google Scholar 

  7. Bizzo WA, Lenço PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sust Energ Rev 29:589–603. https://doi.org/10.1016/j.rser.2013.08.056

    Article  CAS  Google Scholar 

  8. Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8:95. https://doi.org/10.1186/s40643-021-00447-6

    Article  Google Scholar 

  9. Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–7. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x

    Article  CAS  PubMed  Google Scholar 

  10. Savi DC, Aluizio R, Glienke C (2019) Brazilian plants: an unexplored source of endophytes as producers of active metabolites. Planta Med 85:619–636. https://doi.org/10.1055/a-0861-1595

    Article  CAS  PubMed  Google Scholar 

  11. Slama HB, Chenari Bouket A, Alenezi FN, Pourhassan Z, Golińska P, Oszako T, Belbahri L (2021) Potentials of endophytic fungi in the biosynthesis of versatile secondary metabolites and enzymes. Forests 12:1784. https://doi.org/10.3390/f12121784

    Article  Google Scholar 

  12. Raghav D, Jyoti A, Siddiqui AJ, Saxena J (2022) Plant-associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. J Appl Microbiol 133:287–310. https://doi.org/10.1111/jam.15574

    Article  CAS  PubMed  Google Scholar 

  13. Bhadra F, Gupta A, Vasundhara M, Reddy MS (2022) Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech 12:1–17. https://doi.org/10.1007/s13205-022-03145-y

    Article  Google Scholar 

  14. Hawar SN (2022) Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as Medicinal Plant. Int J Biomater Article ID 2135927. https://doi.org/10.1155/2022/2135927

  15. Robl D, Mergel CM, Pradella JGC, Padilla G (2019) Endophytic Actinomycetes as potential producers of hemicellulases and related enzymes for plant biomass degradation. Braz Arch Biol Technol 62. https://doi.org/10.1590/1678-4324-2019180337

  16. Kalim B, Ali NM (2016) Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech 6:122. https://doi.org/10.1007/s13205-016-0445-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abdelmoteleb A, Troncoso-Rojas R, Gonzalez-Soto T, González-Mendoza D (2017) Antifungical activity of autochthonous Bacillus subtilis isolated from Prosopis juliflora against phytopathogenic fungi. Mycobiol 45:385–391. https://doi.org/10.5941/MYCO.2017.45.4.385

    Article  Google Scholar 

  18. Khokhar I, Mukhtar I, Mushtaq S (2011) Isolation and screening of amylolytic filamentous fungi. J Appl Sci Environ Manag 15:203–206. https://doi.org/10.4314/jasem.v15i1.68442

    Article  CAS  Google Scholar 

  19. Farouk H, Attia E, El-Katatny M (2020) Hydrolytic enzyme production of endophytic fungi isolated from soybean (Glycine max). J Mod Res 2:1–7. https://doi.org/10.21608/jmr.2019.15748.1008

    Article  Google Scholar 

  20. Burlacu A, Cornea CP, Israel-Roming F (2016) Screening of xylanase producing microorganisms. Res J Agric Sci 48:8–15

    Google Scholar 

  21. Ferraz A, Baeza J, Rodriguez J, Freer J (2000) Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresour Technol 74:201–212. https://doi.org/10.1016/S0960-8524(00)00024-9

    Article  CAS  Google Scholar 

  22. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  24. McIlvaine TCA (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186. https://doi.org/10.1016/S0021-9258(18)86000-8

    Article  CAS  Google Scholar 

  25. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Cambridge, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

    Chapter  Google Scholar 

  26. Robl D, Delabona PS, Mergel CM, Rojas JD, Costa PS, Pimentel IC, Vicente VA, Pradella JGC, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94. https://doi.org/10.1186/1472-6750-13-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orlandelli RC, Almeida TT, Alberto RN, Polonio JC, Azevedo JL, Pamphile JA (2015) Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz J Microbiol 46:359–366. https://doi.org/10.1590/S1517-838246220131042

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sunitha VH, Nirmala Devi D, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. W J of Agri Scien 9(1):01–09. https://doi.org/10.5829/idosi.wjas.2013.9.1.72148

    Article  CAS  Google Scholar 

  29. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of Southwest Coast of India. Int J Agric Technol 1:67–80

    Google Scholar 

  30. Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273–278. https://doi.org/10.1016/j.jsps.2016.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104. https://doi.org/10.1016/j.aoas.2015.04.001

    Article  Google Scholar 

  32. Jagannath S, Konappa N, Lokesh A, Bhuvaneshwari DT, Udayashankar AC, Chowdappa S, Cheluviah M, Satapute P, Jogaiah S (2021) Bioactive compounds guided diversity of endophytic fungi from Baliospermum montanum and their potential extracellular enzymes. Anal Biochem 614:1. https://doi.org/10.1016/j.ab.2020.114024

    Article  CAS  Google Scholar 

  33. Sridevi B, Charya SMA (2011) Isolation, identification e screening of potential cellulase-free xylanase producing fungi. Afr J Biotechnol 10:4624–4630. https://doi.org/10.5897/AJB10.2108

    Article  Google Scholar 

  34. Ja’afaru MI (2013) Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol 283423. https://doi.org/10.1155/2013/283423

  35. Devi N, Prabakaran JJ, Wahab F (2012) Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed 2:S1280–S1284. https://doi.org/10.1016/S2221-1691(12)60400-6?

    Article  Google Scholar 

  36. Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius Roxb. Afr J Microbiol Res 5:5697–5712. https://doi.org/10.5897/AJMR11.1037

    Article  CAS  Google Scholar 

  37. Karp SG, Schmitt CC, Moreira R, Penha RO, Mello AFM, Herrmann LW, Soccol CR (2022) Sugarcane biorefineries: status and perspectives in bioeconomy. Bioenerg Res 15:1842–1853. https://doi.org/10.1007/s12155-022-10406-4

    Article  CAS  Google Scholar 

  38. Marques NP, Pereira JC, Gomes E, Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crops Prod 122:66–75. https://doi.org/10.1016/j.indcrop.2018.05.022

    Article  CAS  Google Scholar 

  39. Yan S, Xu Y, Yu XW (2021) From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. Bioresour Bioprocess 8:107. https://doi.org/10.1186/s40643-021-00461-8

    Article  Google Scholar 

  40. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3. https://doi.org/10.1186/1754-6834-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Río JC, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez AT, Lu F, Ralph J, Rencoret J (2015) Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg 81:322–338. https://doi.org/10.1016/j.biombioe.2015.07.006

    Article  CAS  Google Scholar 

  42. Kellock M, Rahikainen J, Borisova AS, Voutilainen S, Koivula A, Kruus K, Marjamaa K (2022) Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases. Biotechnol Biofuels Bioprod 15:49. https://doi.org/10.1186/s13068-022-02148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64. https://doi.org/10.1080/07388550290789450

    Article  CAS  PubMed  Google Scholar 

  44. Nair SG, Sindhu R, Shashidhar S (2008) Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Appl Biochem Biotechnol 149:229–243. https://doi.org/10.1007/s12010-007-8108-9

    Article  CAS  PubMed  Google Scholar 

  45. Krisana A, Rutchadaporn S, Jarupan G, Lily E, Sutipa T, Kanyawim K (2005) Endo-1, 4-β-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization and gene isolation. BMB Rep 38:17–23. https://doi.org/10.5483/bmbrep.2005.38.1.017

    Article  CAS  Google Scholar 

  46. Moreira LRS, Campos MC, PHVM, Luciano Paulino Silva, Ricart CAO, Martins PA, Queiroz RML, Ferreira Filho EX (2013) Two β-xylanases from Aspergillus terreus: characterization and influence of phenolic compounds on xylanase activity. Fungal Genet Biol 60:46–52. https://doi.org/10.1016/j.fgb.2013.07.006

    Article  CAS  Google Scholar 

  47. Talley K, Alexov E (2010) On the pH-optimum of activity and stability of proteins. Proteins 78:2699–2706. https://doi.org/10.1002/prot.22786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinen PR, Henn C, Peralta RM, Bracht A, Simão RCG, Silva JLC, Polizeli MLTM, Kadowaki MK (2014) Xylanase from Fusarium heterosporum: Properties and influence of thiol compounds on xylanase activity. Afr J Biotechnol 13:1047–1055. https://doi.org/10.5897/AJB2013.13282

    Article  Google Scholar 

  49. Lopes AM, Valeri A, Pessoa Júnior A (2013) Comparison of kinetic characteristics of xylanases from Aspergillus niger and Trichoderma sp. with pH and temperature baking process parameters. Afr J Biotechnol 12:2640–2645. https://doi.org/10.5897/AJB2012.2929

    Article  CAS  Google Scholar 

  50. Gouda MK, Abdel-Naby MA (2002) Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiol Res 157:275–281. https://doi.org/10.1078/0944-5013-00165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Coordination for the Improvement of Higher Education Personnel” (CAPES) for granting a scholarship to the author Andressa Caroline Flores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andressa Caroline Flores.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosane Freitas Schwan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, A.C., Kimiko Kadowaki, M., da Conceição Silva, J.L. et al. Enzymatic potential of endophytic fungi: xylanase production by Colletotrichum boninense from sugarcane biomass. Braz J Microbiol 54, 2705–2718 (2023). https://doi.org/10.1007/s42770-023-01131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01131-x

Keywords

Navigation