Skip to main content

Advertisement

Log in

Production and Application of Xylanase from Penicillium sp. Utilizing Coffee By-products

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The lignocellulosic coffee by-products such as coffee pulp, coffee cherry husk, silver skin, and spent coffee were evaluated for their efficacy as a sole carbon sources for the production of xylanase in solid-state fermentation using Penicillium sp. CFR 303. Among the residues, coffee cherry husk was observed to produce maximum xylanase activity of 9,475 U/g. The process parameters such as moisture (50%), pH (5.0), temperature (30 °C), particle size (1.5 mm), inoculum size (20%), fermentation time (5 days), carbon source (xylose), and nitrogen source (peptone) were optimized and the enzyme activity was in the range of 19,560–20,388 U/g. The enzyme production was further improved to 23,494 U/g with steam as a pre-treatment. The extracellular xylanase from the fungal source was purified to homogeneity from culture supernatant by ammonium sulfate fractionation, DE32-cellulose with a recovery yield of 25.5%. It appeared as a single band on SDS-PAGE gel with a molecular mass of approximately 27 kDa. It had optimum parameters of 50 °C temperature, pH 5.0, K m 5.6 mg/mL, and V max 925 μmol mg−1 min−1 with brichwood xylan as a substrate. The crude enzyme hydrolysed lignocellulosic substrate as well as industrial pulp. Production of xylanase utilizing coffee by-products constitutes a renewable resource and is reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar, G., Morton-Guyot, J., Trejo Aguilar, B., & Guyot, J. (2000). Purification and characterization of extracellular amylase produced by Lactobacillus manihotivorans LMG 18010 T, an amlylolytic lactic acid bacterium. Enzyme Microbial Technology, 27, 406–413.

    Article  CAS  Google Scholar 

  • Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xyalanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  • Bajpai, P. (1997). Microbial xylanolytic enzyme system: Properties and applications. Advances in Applied Microbiology, 43, 141–194.

    Article  CAS  Google Scholar 

  • Bajpai, P. (1999). Applications of enzymes in the pulp and paper industry. Biotechnology Progress, 15(2), 147–157.

    Article  CAS  Google Scholar 

  • Balkan, B., & Ertan, F. (2005). Production and properties of α-amylase from Pencillium chrysogenum and its applications in starch hydrolysis. Preparative Biochemistry and Biotechnology, 35, 169–178.

    Article  CAS  Google Scholar 

  • Balkan, B., & Ertan, F. (2007). Production of α-amylase from Penicillium chrysogenum under solid-state fermentation by using some agricultural by-products. Food Technology and Biotechnology, 45, 439–442.

    CAS  Google Scholar 

  • Baysal, Z., Uyar, F., & Aytekin, C. (2003). Solid-state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochemistry, 38, 1665–1668.

    Article  CAS  Google Scholar 

  • Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  • Christov, L. P., Szakacs, G., & Balaksrishnan, H. (1999). Production, partial characterization and use of fungal cellulose-free xylanases in pulp bleaching. Process Biochemistry, 34, 511–517.

    Article  CAS  Google Scholar 

  • De Souza-Querido, A. L., Cavalcante-Coelho, J. L., Fernandes de Araujo, E., & Chaves-Alves, V. M. (2006). Partial purification and characterization of xylanase produced by Penicillium expansum. Brazilian Archives of Biology and Technology, 49, 475–480.

    Google Scholar 

  • Farga, L. P., Macedo, G. A., & Carvalho, P. O. (2009). Production of cutinase by Fusarium oxysporum on Brazilian agricultural by-products and its Enantioselective properties. Food and Bioprocess Technology, doi:10.1007/s11947-009-0261-4.

  • Febe, F., Sabu, A., Madhavan-Nampoothiri, K., Szakacs, G., & Pandey, A. (2002). Synthesis of α-amylase by Aspergillus oryzae in solid-state fermentation. Journal of Basic Microbiology, 42, 320–326.

    Article  Google Scholar 

  • Gaspar, A., Cosson, T., Roques, C., & Thonart, P. H. (1997). Study on the production of a xylanolytic complex from Penicillium canescens 10-10c. Applied Biochemistry and Biotechnology, 67, 45–58.

    Article  CAS  Google Scholar 

  • Heck, J. X., De Barros-Soares, L. H., Hertz, P. F., & Záchia-Ayub, M. A. (2006). Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochemical Engineering Journal, 32, 179–184.

    Article  CAS  Google Scholar 

  • Jecu, L. (2000). Solid state fermentation of agricultural; wastes for endoglucanase production. Industrial Crops and Products, 11, 1–5.

    Article  CAS  Google Scholar 

  • Kashyap, P., Sabu, A., Pandey, A., Szakacs, G., & Soccol, C. R. (2002). Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochemistry, 38, 307–312.

    Article  CAS  Google Scholar 

  • Krishna, C., & Chandrasekaran, M. (1996). Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Applied Microbiology and Biotechnology, 46, 106–111.

    Article  CAS  Google Scholar 

  • Kuhad, R., Manchanda, M., & Singh, A. (1998). Optimization of Xylanase production by a hyperxylanolytic mutant strain of Fusarium oxysporum. Process Biochemistry, 33, 641–647.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Lewis-Farr, A., & Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-ß-1, 4-Xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microbial Technology, 39, 1492–1498.

    Article  CAS  Google Scholar 

  • Meenakshi, G., Kalra, K. L., Sareen, V. K., & Soni, G. (2008). Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Brazilian Journal of Microbiology, 39, 535–541.

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Murthy, P. S., & Manonmani, H. K. (2008). Bioconversion of coffee industry wastes with white rot fungi Pleurotus florida. Research Journal of Environmental Science, 2, 145–150.

    Article  CAS  Google Scholar 

  • Murthy, P. S., Madhava Naidu, M., & Srinivas, P. (2009). Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology & Biotechnology, 84, 1246–1249.

    Article  CAS  Google Scholar 

  • Oberoi, H. S., Chavan, Y., Bansal, S., & Dhillon, G. S. (2008). Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food and Bioprocess Technology, doi:10.1007/s11947-008-0092-8.

  • Palmer, T. (2001). Enzymes: Biochemistry, biotechnology and clinical chemistry (pp. 191–222). Chichester: Horwood Publication.

    Google Scholar 

  • Puls, J. C., & Schuseil, J. (1993). Chemistry of hemicelluloses: Relation between hemicellulose structure and enzymes required for hydrolysis. In M. P. Coughlan & G. P. Hazlewood (Eds.), Hemicelluloses and hemicellulases (pp. 1–27). London: Portland.

    Google Scholar 

  • Soloarzano- Lemos, J. L., & Pereira Junior, N. (2002). Influence of some sugars on xylanase production by Aspergillus awamori in solid-state fermentation. Brazilian Archives of Biology and Technology, 45, 431–437.

    Google Scholar 

  • Souza, C. G. M., Simao, R. C. G., & Peralta, R. M. (1998). Purification and characterization of alkali tolerant xylanases from Aspergillus tamarii. Revista de Microbiologia, 29, 93–98.

    CAS  Google Scholar 

  • Zhiwei, L. V., Jinshui, Y., & Hongli, Y. (2008). Production, purification and characterization of an alkaliphilic endo-ß-1, 4-Xylanase from a microbial community EMSD5. Enzyme and Microbial Technology, 43, 343–348.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. V. Prakash, Director, CFTRI, Mysore for constant encouragement. Thanks are also due to Dr. P. Srinivas, Head, Department of Plantation Products Spices and Flavour Technology, CFTRI for his support. The finical help from CSIR, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpa S. Murthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, P.S., Naidu, M.M. Production and Application of Xylanase from Penicillium sp. Utilizing Coffee By-products. Food Bioprocess Technol 5, 657–664 (2012). https://doi.org/10.1007/s11947-010-0331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0331-7

Keywords

Navigation