Skip to main content

Advertisement

Log in

Effects of Salinity and Inundation on Microbial Community Structure and Function in a Mangrove Peat Soil

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Shifts in microbial community function and structure can be indicators of environmental stress and ecosystem change in wetland soils. This study evaluated the effects of increased salinity, increased inundation, and their combination, on soil microbial function (enzyme activity) and structure (phospholipid fatty acid (PLFA) signatures and terminal restriction fragment length polymorphisms (T-RFLP) profiles) in a brackish mangrove peat soil using tidal mesocosms (Everglades, Florida, USA). Increased tidal inundation resulted in reduced soil enzyme activity, especially alkaline phosphatase, an increase in the abundance and diversity of prokaryotes, and a decline in number of eukaryotes. The community composition of less abundant bacteria (T-RFLPs comprising 0.3–1 % of total fluorescence) also shifted as a result of increased inundation under ambient salinity. Several key biogeochemical indicators (oxidation-reduction potential, CO2 flux, porewater NH4 +, and dissolved organic carbon) correlated with measured microbial parameters and differed with inundation level. This study indicates microbial function and composition in brackish soil is more strongly impacted by increased inundation than increased salinity. The observed divergence of microbial indicators within a short time span (10-weeks) demonstrates their usefulness as an early warning signal for shifts in coastal wetland ecosystems due to sea level rise stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13. doi:10.1016/j.ecss.2007.08.024

    Article  Google Scholar 

  • Bell CW, Fricks BE, Rocca JD, et al (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Visualized Exp: JoVE e50961. doi:10.3791/50961

  • Berner EK, Berner RA (2012) Global environment: Water, air, and geochemical cycles. Princeton University Press, Princeton, NY

    Google Scholar 

  • Billings SA, Ziegler SE (2008) Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Glob Chang Biol 14:1025–1036. doi:10.1111/j.1365-2486.2008.01562.x

    Article  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. doi:10.1007/s002489900082

    Article  CAS  PubMed  Google Scholar 

  • Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453–470

    Article  CAS  Google Scholar 

  • Boyer JN, Fourqurean JW, Jones RD (1997) Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: zones of similar influence. Estuaries 20:743. doi:10.2307/1352248

    Article  CAS  Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and Freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33:725–749

    Article  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, et al. (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348. doi:10.1046/j.1462-2920.2002.00297.x

    Article  PubMed  Google Scholar 

  • Chambers LG, Davis SE, Troxler TG, et al. (2014) Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 726:195–211. doi:10.1007/s10750-013-1764-6

    Article  CAS  Google Scholar 

  • Chambers LG, Davis SE, Troxler TG (2015) Sea level rise in the Everglades: plant-soil-microbial feedbacks in response to changing physical conditions. In: Entry JA, Gottlieb AD, Jayachandrahan K, Ogram A (eds) Microbiology of the Everglades ecosystem. CRC Press, Boca Raton, pp. 89–112

    Google Scholar 

  • Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383. doi:10.1007/s10533-013-9841-5

    Article  CAS  Google Scholar 

  • Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a Freshwater Wetland. Soil Sci Soc Am J 75:2000–2007. doi:10.2136/sssaj2011.0026

    Article  CAS  Google Scholar 

  • Chrost RJ, Krambeck HJ (1986) Fluorescence correction for measurements of enzyme-activity in natural-waters using methylumbelliferyl substrates. Archiv Fur Hydrobiologie 106:79–90

    CAS  Google Scholar 

  • Chrost RJ, Overbeck J (1987) Kinetics of alkaline-phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plusssee (North-German eutrophic lake). Microb Ecol 13:229–248. doi:10.1007/bf02025000

    Article  CAS  PubMed  Google Scholar 

  • Córdova-kreylos AL, Cao Y, Green PG, et al. (2006) Diversity, composition, and geographical distribution of microbial communities in California Salt Marsh Sediments Diversity, composition, and geographical distribution of microbial communities in California Salt Marsh Sediments. Appl Environ Microbiol 72:3357–3366. doi:10.1128/AEM.72.5.3357

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis SM (1991) Growth, decomposition, and nutrient retention of Cladium-jamaicense crantz and Typha-domingensis pres in the Florida Everglades. Aquat Bot 40:203–224

    Article  Google Scholar 

  • Day JW, Christian RR, Boesch DM, et al. (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuar Coasts 31:477–491. doi:10.1007/s12237-008-9047-6

    Article  Google Scholar 

  • Delaune RD, Smith CJ, Patrick WH (1983) Methane release from Gulf-coast wetlands. Tellus Ser B Chem Phys Meteorol 35:8–15

    Article  Google Scholar 

  • Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci U S A 98:14218–14223. doi:10.1073/pnas.251209298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagherazzi S, Kirwan ML, Mudd SM, et al (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climate factors. Rev Geophys 50:28. doi:10.1029/2011rg000359

  • Frankenberger WT, Bingham JFT (1982) Influence of salinity on Soil enzyme activities. Soil Sci Soc Am J 46:1173–1177

    Article  CAS  Google Scholar 

  • Frostegård Å, Bååth E, Tunlio A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730. doi:10.1016/0038-0717(93)90113-P

    Article  Google Scholar 

  • Gedan KB, Kirwan ML, Wolanski E, et al. (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106:7–29. doi:10.1007/s10584-010-0003-7

    Article  Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in Salt Marsh Ecosystems. Ann Rev Mar Sci 1:117–141. doi:10.1146/annurev.marine.010908.163930

    Article  PubMed  Google Scholar 

  • Gribsholt B, Kristensen E (2003) Benthic metabolism and sulfur cycling along an inundation gradient in a tidal Spartina anglica salt marsh. Limnol Oceanogr 48:2151–2162

    Article  CAS  Google Scholar 

  • Hopfensperger KN, Burgin AJ, Schoepfer VA, Helton AM (2014) Impacts of saltwater incursion on plant communities, anaerobic microbial metabolism, and resulting relationships in a restored Freshwater wetland. Ecosystems 17:792–807. doi:10.1007/s10021-014-9760-x

    Article  CAS  Google Scholar 

  • Hoppe H-G (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. Handbook of methods in aquatic microbial ecology 423–431

  • Howarth W (1984) The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27

    Article  CAS  Google Scholar 

  • Ikenaga M, Guevara R, Dean AL, et al. (2010) Changes in community structure of sediment bacteria along the Florida Coastal Everglades Marsh-Mangrove-Seagrass salinity gradient. Microb Ecol 59:284–295. doi:10.1007/s00248-009-9572-2

    Article  PubMed  Google Scholar 

  • Inglett KS, Inglett PW, Reddy KR (2011) Soil Microbial Community composition in a restored calcareous subtropical Wetland. Soil Sci Soc Am J 75:1731–1740. doi:10.2136/sssaj2010.0424

    Article  CAS  Google Scholar 

  • Jackson CR, Vallaire SC (2009) Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands 29:277–287

    Article  Google Scholar 

  • Jin XB, Huang JY, Zhou YK (2012) Impact of coastal wetland cultivation on microbial biomass, ammonia-oxidizing bacteria, gross N transformation and N2O and NO potential production. Biol Fertil Soils 48:363–369. doi:10.1007/s00374-011-0631-8

    Article  CAS  Google Scholar 

  • Josephson KL, Gerba CP, Pepper IL (1993) Polymerase chain-reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59:3513–3515

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution–reciprocal effects? J Ecol 81:477. doi:10.2307/2261526

    Article  Google Scholar 

  • Mentzer JL, Goodman RM, Balser TC (2006) Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284:85–100. doi:10.1007/s11104-006-0032-1

    Article  CAS  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, et al. (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Morrissey EM, Berrier DJ, Neubauer SC, Franklin RB (2014a) Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry 117:473–490. doi:10.1007/s10533-013-9894-5

    Article  CAS  Google Scholar 

  • Morrissey EM, Gillespie JL, Morina JC, Franklin RB (2014b) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Chang Biol 20:1351–1362. doi:10.1111/gcb.12431

    Article  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, et al. (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi:10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  • Neubauer SC (2011) Ecosystem responses of a tidal Freshwater Marsh Experiencing Saltwater intrusion and altered hydrology. Estuar Coasts 36:491–507. doi:10.1007/s12237-011-9455-x

    Article  Google Scholar 

  • Neumann JE, Yohe G, Nicholls RJ, Manion M (2000) Sea-level rise & global climate change: a review of impacts to U.S. coasts. 1–43

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Chang Hum Pol Dimens 9:S69–S87

    Article  Google Scholar 

  • Portnoy JW, Giblin AE (1997) Biogeochemical effects of seawater restoration to diked salt marshes. Ecol Appl 7:1054–1063. doi:10.1890/1051-0761(1997)007[1054:beosrt]2.0.co;2

    Article  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854. doi:10.1016/s0038-0717(03)00125-1

    Article  CAS  Google Scholar 

  • Rivera-Monroy VH, de Mutsert K, Twilley RR, et al. (2007) Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA. Hydrobiologia 17:169–178

    Google Scholar 

  • Ross MS, Meeder JF, Sah JP, et al. (2000) The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–112. doi:10.2307/3236781

    Article  Google Scholar 

  • Shade A, Jones SE, Caporaso JG, et al. (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5:e01371–e01314. doi:10.1128/mBio.01371-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman RE, Fahey TJ, Howarth RW (1998) Forest: in a neotropical interactions mangrove and sulfur dynamics iron, phosphorus. Oecologia 115:553–563. doi:10.1007/s004420050553

    Article  Google Scholar 

  • Sinsabaugh RL (1994) Enzymatic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74. doi:10.1007/bf00418675

    Article  CAS  Google Scholar 

  • Smith TJ, Anderson GH, Balentine K, et al. (2009) Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29:24–34. doi:10.1672/08-40.1

    Article  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic-carbon as a sensitive indicator of changes in soil organic-matter. Aust J Soil Res 30:195–207. doi:10.1071/sr9920195

    Article  CAS  Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J, et al. (1990) Estimation of soil microbial c by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kec-factor. Soil Biol Biochem 22:301–307. doi:10.1016/0038-0717(90)90104-8

    Article  Google Scholar 

  • Teh SY, DeAngelis DL, Sternberg LDSL, et al. (2008) A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades. Ecol Model 213:245–256. doi:10.1016/j.ecolmodel.2007.12.007

    Article  Google Scholar 

  • Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the US Atlantic and Gulf coasts. Clim Res 18:205–228

    Article  Google Scholar 

  • Troxler TG, Ikenaga M, Scinto L, et al. (2012) Patterns of Soil bacteria and Canopy Community structure related to tropical peatland development. Wetlands 32:769–782. doi:10.1007/s13157-012-0310-z

    Article  Google Scholar 

  • Unger IM, Kennedy AC, Muzika RM (2009) Flooding effects on soil microbial communities. Appl Soil Ecol 42:1–8. doi:10.1016/j.apsoil.2009.01.007

    Article  Google Scholar 

  • Van Ryckegem G, Verbeken A (2005) Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia 80:173–197. doi:10.1127/0029-5035/2005/0080-0173

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology- quantitative approaches to the study of microbial communties. Bioscience 39:535–541. doi:10.2307/1310976

    Article  CAS  PubMed  Google Scholar 

  • Welch R, Madden M, Doren RF (1999) Mapping the Everglades. Photogramm Eng Remote Sens 65:163–170

    Google Scholar 

  • Weston NB, Dixon RE, Joye SB (2006) Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. J Geophys Res Biogeosci 111:14. doi:10.1029/2005jg000071

    Google Scholar 

  • Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102:135–151. doi:10.1007/s10533-010-9427-4

    Article  CAS  Google Scholar 

  • White JR, Reddy KR (2001) Influence of selected inorganic electron acceptors on organic nitrogen mineralization in everglades soils. Soil Sci Soc Am J 65:941–948

    Article  CAS  Google Scholar 

  • Williams K, Ewel KC, Stumpf RP, et al. (1999) Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80:2045–2063

    Article  Google Scholar 

  • Wright AL, Reddy KR (2001) Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils. Soil Sci Soc Am J 65:588–595

    Article  CAS  Google Scholar 

  • Ye RZ, Jin QS, Bohannan B, et al. (2014) Homoacetogenesis: A potentially underappreciated carbon pathway in peatlands. Soil Biol Biochem 68:385–391. doi:10.1016/j.soilbio.2013.10.020

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, et al. (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to the South Florida Water Management District for logistical support and the National Park Service for accommodations and laboratory support at the Florida Bay Interagency Science Center. We also gratefully acknowledge Alan Downey-Wall for his help in conducting this experiment. Partial financial support was provided by National Science Foundation grants DEB- 1237517 and DBI-0620409 and the Everglades Foundation. This is SERC contribution #694 at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa G. Chambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chambers, L.G., Guevara, R., Boyer, J.N. et al. Effects of Salinity and Inundation on Microbial Community Structure and Function in a Mangrove Peat Soil. Wetlands 36, 361–371 (2016). https://doi.org/10.1007/s13157-016-0745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0745-8

Keywords

Navigation