Skip to main content

Advertisement

Log in

The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13

    Article  Google Scholar 

  • Badola R, Hussain SH (2005) Valuing ecosystem functions: an empirical study on storm protection function of Bhitarkanika mangrove ecosystem, India. Environ Conserv 32:1–8

    Article  Google Scholar 

  • Barbier EB (2006) Natural barriers to natural disasters: replanting mangroves after the tsunami. Front Ecol Environ 4:124–131

    Article  Google Scholar 

  • Barbier EB (2007) Valuing ecosystem services as productive inputs. Econ Policy 22:177–229

    Article  Google Scholar 

  • Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera J, Granek EF, Polasky S, Aswani S, Cramer LA, Stoms DM, Kennedy CJ, Bael D, Kappel CV, Perillo GME, Reed DJ (2008) Coastal ecosystem-based management with nonlinear ecological functions and values. Science 321:319–323

    Google Scholar 

  • Boorman LA (1996) Results for the Institute of Terrestrial Ecology, England. In: Lefeuvre JC (ed) Effects of environmental change on European Salt Marshes: structure, functioning and exchange potentialities with Marine Coastal Waters. University of Rennes, Rennes

    Google Scholar 

  • Bouma TJ, De Vries MB, Peralta G, Tanczos IC, van de Koppel J, Herman PMJ (2005) Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86:2187–2199

    Article  Google Scholar 

  • Bouma TJ, Friedrichs M, van Wesenbeek BK, Temmerman S, Graf G, Herman PMJ (2009) Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118:260–268

    Article  Google Scholar 

  • Braatz S, Fortuna S, Broadhead J, Leslie R (2007) Coastal protection in the aftermath of the Indian Ocean Tsunami. What role for forests and trees? FAO, Bangkok

  • Brown JH, Whitham TG, Morgan Ernest SK, Gehring CA (2001) Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643–650

    Article  Google Scholar 

  • Cahoon DR (2006) A review of major storm impacts on coastal wetland elevations. Estuar Coasts 29:889–898

    Google Scholar 

  • Cahoon DR, Lynch JC, Powell AN (1996) Marsh accretion in a southern California estuary. Estuar Coast Shelf Sci 43:19–32

    Article  Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt E, Perez BC (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–1105

    Article  Google Scholar 

  • Carniello L, Defina A, Fagherazzi S, D’Alpaos L (2005) A combined wind wave-tidal model for the Venice lagoon, Italy. J Geophys Res 110:F04007

    Article  Google Scholar 

  • Chapman VJ (1974) Salt marshes and salt deserts of the world, 2nd edn. Verlag von J. Cramer, Lehre

    Google Scholar 

  • Chappell J (1993) Contrasting Holocene sedimentary geologies of lower Daly River, northern Australia, and lower Sepik-ramu, Papua New Guinea. Sediment Geol 83:339–358

    Article  Google Scholar 

  • Chatenoux B, Peduzzi P (2007) Impacts from the 2004 Indian Ocean Tsunami: analysing the potential protecting role of environmental features. Nat Hazards 40:289–304

    Article  Google Scholar 

  • Christiansen T, Wiberg PL, Milligan TG (2000) Flow and sediment transport on a tidal salt marsh surface. Estuar Coast Shelf Sci 50:315–331

    Article  Google Scholar 

  • Cochard R, Ranamukhaarachchi SL, Shivakoti GP, Shipin OV, Edwards PJ, Seeland KT (2008) The 2004 tsunami in Aceh and Southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect Plant Ecol Evol Syst 10:3–40

    Article  Google Scholar 

  • Cooper MJP, Beevers MD, Oppenheimer M (2008) The potential impacts of sea level rise on the coastal region of New Jersey, USA. Clim Change 90:475–492

    Article  Google Scholar 

  • Coops H, Geilen N, Verheij HJ, Boeters R, van der Velde G (1996) Interactions between waves, bank erosion and emergent vegetation: an experimental study in a wave tank. Aquat Bot 53:187–198

    Article  Google Scholar 

  • Costanza R, Perez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. Ambio 37:241–248

    Article  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78

    Article  Google Scholar 

  • D’Alpaos A, Lanzoni S, Mudd SM, Fagherazzi S (2006) Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar Coast Shelf Sci 69:311–324

    Article  Google Scholar 

  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58

    Article  Google Scholar 

  • Dahdouh-Guebas F, Jayatissa LP, Di Nitto D, Bosire JO, Lo Seen D, Koedam N (2005) How effective were mangroves as a defense against the recent tsunami? Curr Biol 15:R443–R447

    Article  Google Scholar 

  • Dahdouh-Guebas F, Collin S, Lo Seen D, Rönnbäck P, Depommier D, Ravishankar T, Koedam N (2006) Analysing ethnobotanical and fishery-related importance of mangroves of the East-Godavari Delta (Andhra Pradesh, India) for conservation and management purposes. J Ethnobiol Ethnomedicine 2:24–46

    Article  Google Scholar 

  • Danard MB, Murty TS (1994) Storm surge mitigation through vegetation canopies. Nat Hazards 9:155–166

    Article  Google Scholar 

  • Danielsen F, Sørensen MK, Olwig MF, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643

    Article  Google Scholar 

  • Das S, Vincent JR (2009) Mangroves protected villages and reduced death toll during Indian super cyclone. PNAS 106:7357–7360

    Article  Google Scholar 

  • Day JWJ, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF (2007) Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science 315:1679–1684

    Article  Google Scholar 

  • Dean RG, Bender CJ (2006) Static wave setup with emphasis on damping effects by vegetation and bottom friction. Coast Eng 53:149–156

    Article  Google Scholar 

  • DeLaune RD, Nyman JA, Patrick WHJ (1994) Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. J Coast Res 10:1021–1030

    Google Scholar 

  • Ellison JC (2009) Geomorphology and sedimentology of mangroves. In: Perillo GME, Wolanski E, Cahoon DME, Brinson MM (eds) Coastal wetlands. An integrated ecosystem approach. Elsevier, Amsterdam, pp 565–591

    Google Scholar 

  • Fagherazzi S, Carniello L, D’Alpaos L, Defina A (2006) Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. PNAS 103:8337–8341

    Article  Google Scholar 

  • Feagin RA (2008) Vegetation’s role in coastal protection. Science 320:176–177

    Article  Google Scholar 

  • Feagin RA, Lozada-Bernard SM, Ravens TM, Möller I, Yeager KM, Baird AH (2009) Does vegetation prevent wave erosion of salt marsh edges? PNAS 106:10109–10113

    Article  Google Scholar 

  • Feagin RA, Mukherjee N, Shanker K, Baird AH, Cinner J, Kerr AM, Koedam N, Sridhar A, Arthur R, Jayatissa LP, Lo Seen D, Menon M, Rodriguez S, Shamsuddoha M, Dahdouh-Guebas F (2010) Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv Lett 3:1–11

    Article  Google Scholar 

  • FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  Google Scholar 

  • Fosberg FR (1971) Mangroves v. tidal waves. Biol Conserv 4:38–39

    Article  Google Scholar 

  • Francis RA, Falconi SM, Nateghi R, Guikema SD (2011) Probabilistic life cycle analysis model for evaluating electric power infrastructure risk mitigation investments. Clim Change (this issue)

  • French JR (1993) Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, north Norfolk, U.K. Earth Surf Processes Landf 18:63–81

    Article  Google Scholar 

  • Friedman RM, Dunn SV, Merrell WJJ (2002) Summary of the Heinz Center Report on coastal erosion and the National Flood Insurance Program. J Coast Res 18:568–575

    Google Scholar 

  • Friedrichs CT, Aubrey DG (1996) Uniform bottom shear stress and equilibrium hyposometry of intertidal flats. In: Pattiaratchi C (ed) Mixing in estuaries and coastal seas. American Geophysical Union, Washington, pp 405–429

    Google Scholar 

  • Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310

    Article  Google Scholar 

  • GCRMN (2006) Status of coral reefs in tsunami affected countries: 2005. Townsville, Australia

  • Gönnert G, Dube SK, Murty T, Siefert W (2001) Global storm surges: theory observation and application. Die Küste

  • Halpern BS, Silliman BR, Olden JD, Bruno JF, Bertness MD (2007) Incorporating positive interactions in aquatic restoration and conservation. Front Ecol Environ 5:153–160

    Article  Google Scholar 

  • Hardaway CS, Thomas GR, Fowler BK, Hill CL, Frye JE, Ibison NA (1984) Vegetative erosion control project: final report 1984. Virginia Institute of Marine Science, School of Marine Science, Gloucester Point

  • Hiraishi T, Harada K (2003) Greenbelt tsunami prevention in South-Pacific region. Report of the Port and Airport Research Institute 42:1–23

    Google Scholar 

  • IPCC (ed) (2007) Climate change 2007: the physical science basis. Cambridge University Press, New York

    Google Scholar 

  • Kathiresan K, Rajendran N (2005) Coastal mangrove forests mitigated tsunami. Estuar Coast Shelf Sci 65:601–606

    Article  Google Scholar 

  • Kerr AM, Baird AH (2007) Natural barriers to natural disasters. BioScience 57:102–103

    Article  Google Scholar 

  • Kerr AM, Baird AH, Bhalla RS, Sirinivas V (2009) Reply to ‘Using remote sensing to assess the protective role of coastal woody vegetation against tsunami waves’. Int J Remote Sens 30:3817–3825

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR (2009) Accelerated sea-level rise—a response to Craft et al. Front Ecol Environ 7:126–127

    Article  Google Scholar 

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. PNAS 104:6118–6122

    Article  Google Scholar 

  • Kirwan M, Temmerman S (2009) Coastal marsh response to historical and future sea-level acceleration. Quat Sci Rev 28:1801–1808

    Article  Google Scholar 

  • Kirwan ML, Murray AB, Boyd WS (2008) Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys Res Lett 35:L05403

    Article  Google Scholar 

  • Knutson PL, Ford JC, Inskeep MR, Oyler J (1981) National survey of planted salt marshes (Vegetative stabilization and wave stress). Wetlands 1:129–157

    Article  Google Scholar 

  • Knutson PL, Bruochu RA, Seelig WN, Inskeep M (1982) Wave damping in Spartina alterniflora marshes. Wetlands 2:87–104

    Article  Google Scholar 

  • Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME, Hacker SD, Granek EF, Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, Wolanski E (2009) Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front Ecol Environ 7:29–37

    Article  Google Scholar 

  • Krauss KW, Doyle TW, Doyle TJ, Swarzenski CM, From AS, Day RH, Conner WH (2009) Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29:142–149

    Article  Google Scholar 

  • Kriwoken LK, Hedge P (2000) Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia. Ocean Coast Manag 43:573–584

    Article  Google Scholar 

  • Langlois E, Bonis A, Bouzillé JB (2003) Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species? Estuar Coast Shelf Sci 56:239–249

    Article  Google Scholar 

  • Lawler JJ, Aukema JE, Grant JB, Halpern BS, Kareiva P, Nelson CR, Ohleth K, Olden JD, Schlaepfer MA, Silliman BR, Zaradic P (2006) Conservation science: a 20-year report card. Front Ecol Environ 4:473–480

    Article  Google Scholar 

  • Le Hir P, Roberts W, Cazaillet O, Christie M, Bassoullet P, Bacher C (2000) Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–1459

    Article  Google Scholar 

  • Le Hir P, Monbet Y, Orvain F (2007) Sediment erodability in sediment transport modeling: can we account for biota effects? Cont Shelf Res 27:1116–1142

    Article  Google Scholar 

  • Leonard LA, Luther ME (1995) Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr 40:1474–1484

    Article  Google Scholar 

  • Lovelace JK (1994) Storm-tide elevations produced by Hurricane Andrew along the Louisiana coast, August 25–27, 1992. U.S. Geological Survey, Report 94-371, Baton Rouge, Louisiana

  • Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A (2007) Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402

    Article  Google Scholar 

  • Mariotti G, Fagherazzi S (2010) A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J Geophys Res 115:F01004

    Article  Google Scholar 

  • Massel SR, Furukawa K, Brinkman RM (1999) Surface wave propagation in mangrove forests. Fluid Dyn Res 24:219–249

    Article  Google Scholar 

  • Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1:127–135

    Article  Google Scholar 

  • Mazda Y, Magi M, Ikeda Y, Kurokawa T, Asano T (2006) Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecol Manag 14:365–378

    Article  Google Scholar 

  • Mazda Y, Wolanski E, Ridd PV (2007) The role of physical processes in mangrove environments. A manual for the preservation and conservation of mangrove ecosystems. Terrapub, Tokyo

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37

    Article  Google Scholar 

  • Meyer DL, Townsend EC, Thayer GW (1997) Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor Ecol 5:93–99

    Article  Google Scholar 

  • Micheli ER, Kirchner JW (2002) Effects of wet meadow riparian vegetation on streambank erosion. 2. Measurements of vegetated bank strength and consequences for failure mechanics. Earth Surf Processes Landf 27:687–697

    Article  Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7:770–801

    Article  Google Scholar 

  • Morgan PA, Burdick DM, Short FT (2009) The functions and values of fringing salt marshes in northern New England, USA. Estuar Coasts 32:483–495

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Mudd SM, D’Alpaos A, Morris JT (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res 115:F03029 (in review)

    Article  Google Scholar 

  • Möller I (2006) Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuar Coast Shelf Sci 69:337–351

    Article  Google Scholar 

  • Möller I, Spencer T, French JR, Leggett DJ, Dixon M (1999) Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar Coast Shelf Sci 49:411–426

    Article  Google Scholar 

  • National Geophysical Data Center (2010) Tsunami data and information. NOAA, Silver Spring

  • Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35:479–489

    Article  Google Scholar 

  • Neumeier U, Ciavola P (2004) Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J Coast Res 20:435–447

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Change 9:S69–S87

    Article  Google Scholar 

  • Olwig MF, Sørensen MK, Rasmussen MS, Danielsen F, Selvam V, Hansen L, Nyborg L, Vestergaard KB, Parish F, Karunagaran VM (2007) Using remote sensing to assess the protective role of coastal woody vegetation against tsunami waves. Int J Remote Sens 28:3153–3169

    Article  Google Scholar 

  • Peralta G, van Duren LA, Morris EP, Bouma TJ (2008) Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar Ecol Prog Ser 368:103–115

    Article  Google Scholar 

  • Piazza BP, Banks PD, La Peyre MK (2005) The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restor Ecol 13:499–506

    Article  Google Scholar 

  • Quartel S, Kroon A, Augustinus PGEF, Van Santen P, Tri NH (2007) Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. J Asian Earth Sci 29:576–584

    Article  Google Scholar 

  • Ranwell DS (1967) World resources of Spartina townsendii (sensu lato) and economic use of Spartina marshland. J Appl Ecol 4:239–256

    Article  Google Scholar 

  • Redfield AC (1965) Ontogeny of a salt marsh estuary. Science 147:50–55

    Article  Google Scholar 

  • Redfield AC (1972) Development of a New England salt marsh. Ecol Monogr 42:201–237

    Article  Google Scholar 

  • Resio DT, Westerink JJ (2008) Modeling the physics of storm surges. Phys Today 61:33–38

    Article  Google Scholar 

  • Roland RM, Douglass SL (2005) Estimating wave tolerance of Spartina alterniflora in Coastal Alabama. J Coast Res 21:453–463

    Article  Google Scholar 

  • Shaler NS (1886) Sea-coast swamps of the Eastern United States. U.S. Geological Survey, 6th Annual Report

  • Silliman BR, Bortolus A (2003) Underestimation of Spartina productivity in western Atlantic marshes: marsh invertebrates eat more than just detritus. Oikos 101:549–554

    Article  Google Scholar 

  • Stokstad E (2005) Louisiana’s wetlands struggle for survival. Science 310:1264–1266

    Article  Google Scholar 

  • Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210

    Article  Google Scholar 

  • Suhayda JN (1997) Modeling impacts of Louisiana barrier islands on wetland hydrology. J Coast Res 13:686–693

    Google Scholar 

  • Swann L (2008) The use of living shorelines to mitigate the effects of storm events on Dauphin Island, Alabama, USA. Am Fish Soc Symp 64:47–57

    Google Scholar 

  • Tanaka N, Sasaki Y, Mowjood MIM, Jinadasa KBSN, Homchuen S (2007) Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami. Landsc Ecol Eng 3:33–45

    Article  Google Scholar 

  • Temmerman S, Govers G, Wartel S, Meire P (2004) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212:1–19

    Article  Google Scholar 

  • Teo FY, Falconer RA, Lin B (2009) Modelling effects of mangroves on tsunamis. Water Manag 162:3–12

    Google Scholar 

  • Thampanya U, Vermaat JE, Sinsakul S, Panapitukkul N (2006) Coastal erosion and mangrove progradation of Southern Thailand. Estuar Coast Shelf Sci 68:75–85

    Article  Google Scholar 

  • Turner RE, Baustian JJ, Swenson EM, Spicer JS (2006) Wetland sedimentation from Hurricanes Katrina and Rita. Science 314:449–452

    Article  Google Scholar 

  • UNEP (2006) Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment. UNEP

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51:807–815

    Article  Google Scholar 

  • van de Koppel J, van der Wal D, Bakker JP, Herman PMJ (2005) Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165:E1–E12

    Article  Google Scholar 

  • Vermaat JE, Thampanya U (2006) Mangroves mitigate tsunami damage: a further response. Estuar Coast Shelf Sci 69:1–3

    Article  Google Scholar 

  • Victor S, Golbuu Y, Wolanski E, Richman RH (2006) Sedimentation in mangroves and coral reefs in a wet tropical island, Pohnpei, Micronesia. Estuar Coast Shelf Sci 66:409–416

    Article  Google Scholar 

  • Walters BB (2003) People and mangroves in the Philippines: fifty years of coastal environmental change. Environ Conserv 30:293–303

    Article  Google Scholar 

  • Walton MEM, Samonte-Tan GPB, Primavera JH, Edwards-Jones G, Le Vay L (2006) Are mangroves worth replanting? The direct economic benefits of a community-based reforestation project. Environ Conserv 33:335–343

    Article  Google Scholar 

  • Wamsley TV, Cialone MA, Smith JM, Atkinson JH, Rosati JD (2010) The potential of wetlands in reducing storm surge. Ocean Eng 37:59–68

    Article  Google Scholar 

  • Wanless HR, Parkinson RW, Tedesco LP (1994) Sea level control on stability of Everglades wetlands. In: Davis SM, Odgen JC (eds) Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 199–222

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  Google Scholar 

  • Wayne CJ (1976) The effect of sea and marsh grass on wave energy. Coastal Res 4:6–8

    Google Scholar 

  • Wolanski E (2007) Estuarine ecohydrology. Elsevier, New York

    Google Scholar 

  • Wolanski E, Spagnol S, Ayukai T (1998) Field and model studies of the fate of particulate carbon in mangrove-fringed Hinchinbrook Channel, Australia. Mangroves Salt Marshes 2:205–221

    Article  Google Scholar 

  • Wolanski E, Brinson M, Cahoon DME, Perillo GME (2009) Coastal wetlands. A synthesis. In: Perillo GME, Wolanski E, Cahoon DME, Brinson MM (eds) Coastal wetlands. An integrated ecosystem approach. Elsevier, Amsterdam, pp 1–62

    Google Scholar 

  • Woodroffe CD, Davies G (2009) The morphology and development of tropical coastal wetlands. In: Perillo GME, Wolanski E, Cahoon DME, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 65–88

    Google Scholar 

  • Yang SL, Li H, Ysebaert T, Bouma TJ, Zhang WX, Wang YY, Li P, Li M, Ding PX (2008) Spatial and temporal variation in sediment grain size in coastal wetlands, Yangtze Delta: on the role of physical and biotic controls. Estuar Coast Shelf Sci 77:657–671

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64:41–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keryn B. Gedan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gedan, K.B., Kirwan, M.L., Wolanski, E. et al. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106, 7–29 (2011). https://doi.org/10.1007/s10584-010-0003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-0003-7

Keywords

Navigation