Skip to main content
Log in

The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm−1 day−1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm−2 day−1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm−2 day−1 .

During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.

Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenshtat, Z., A. Stoler, Y. Cohen, and H. Nielsen. 1981. The Geochemical Sulfur Envirchment of Recent Organic Matter by Polysulfides in the Solar Lake (Sinai). Proceedings of the 5th International Organic Geochemistry Congress, Bergen, Norway.

  • Altschuler, Z. S., M. M. Schnepfe, C. C. Silber, and F. O. Simon. 1983. Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221: 221–227.

    Google Scholar 

  • Armstrong, W. 1975. Waterlogged soils. Pages 181–219 in J. R. Etherington, editor Environment and Plant Ecology. John Wiley and Sons, London.

    Google Scholar 

  • Begheijn, L. Th., N. van Breeman, and E. J. Velthorst. 1978. Analysis of sulfur compounds in acid sulfate soils and other recent marine soils. Communications in Soil Science and Plant Analysis 9: 873–882.

    Google Scholar 

  • Berner, R. A. 1970. Sedimentary pyrite formation. American Journal of Science 268: 1–23.

    Google Scholar 

  • Casagrande, D. J., K. Siefert, C. Berschinski, and N. Sutton. 1977. Sulfur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: origins of sulfur in coal. Geochimica et Cosmochimica Acta 41: 161–167.

    Google Scholar 

  • Cavanaugh, C. M. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nautre 302: 58–61.

    Google Scholar 

  • Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, and J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube wormRiftia pachyptila Jones: possible chemoautorophic symbionts. Science 213: 340–342.

    Google Scholar 

  • Cohen, Y., B. B. Yørgensen, E. Padan, and M. Shilo. 1975. Sulphide-dependent anoxygenic photosynthesis in the cyanobacteriumOscillatoria limnetica. Nature 256: 489–491.

    Google Scholar 

  • Diemont, W. H. and W. Van Wijngaarden. 1974. Sedimentation patterns, soils mangrove vegetation and land use in tidal areas of West Malaysia. In: Walsh G. et al., (eds.) Proceedings of the international Symposium on Biology and Management of Mangroves, pp. 513–528. East-West Center, Hawaii.

    Google Scholar 

  • Edmond, J. M., C. Measures, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, and J. B. Corliss. 1979. Ridge crest hydrothermal activity and the balance of the major elements in the ocean: The Galapagos data. Earth and Planetary Science Letters 46: 1–18.

    Google Scholar 

  • Edmond, J. M., K. L. von Damm, R. E. McDuff, and C. I. Measures. 1982. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297: 187–191.

    Google Scholar 

  • Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm,Riftia pachyptila Jones (Vestimentifera). Science 213: 336–338.

    Google Scholar 

  • Fenchel, T. and B. B. Jørgensen. 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. Advances in Microbial Ecology 1: 1–57.

    Google Scholar 

  • Gallagher, J. L. and F. G. Plumley. 1979. Underground biomass profiles and productivity in Atlantic coastal marshes. American Journal of Botany 66: 151–161.

    Google Scholar 

  • Giblin, A. E. and R. W. Howarth. 1984. Pore water evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography 29: 47–63.

    Google Scholar 

  • Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens, and R. A. Berner. 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group. American Journal of Science 277: 193–237.

    Google Scholar 

  • Good, R. E., N. F. Good, and B. R. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component. In: Kennedy, V. S. (ed.), Estuarine Comparisons, pp. 139–157. (Academic Press, N. Y.

    Google Scholar 

  • Hargrave, B. T., and G. A. Phillips. 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment. Estuarine and Coastal Shelf Science 12: 725–737.

    Google Scholar 

  • Howarth, R. W. 1979-a. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–41.

    Google Scholar 

  • Howarth, R. W. 1979-b. The role of sulfur in salt marsh metabolism. Doctoral dissertation, Woods Hole Oceanographic Institution/Massachusetts Institute of Technology Joint Program in Oceanography, Woods Hole, MA.

  • Howarth, R. W., and A. Giblin. 1983. Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnology and Ocenaography 28: 70–82.

    Google Scholar 

  • Howarth, R. W., A. Giblin, J. Gale, B. J. Peterson, and G. W. Luther. 1983. Reduced sulfur compounds in the pore waters of a New England salt marsh. In: Hallberg, R. O. (ed)., Environmental Biogeochemistry, Ecological Bulletin (Stockholm) 35: 135–152.

  • Howarth, R. W. and J. E. Hobbie. 1982. The regulation of deomposition and heterotrophic microbial activity in salt masrsh soils: A review. In Kennedy, V. S. (ed), Estuarine Comparisons, pp. 103–127. Academic Press.

  • Howarth, R. W. and B. B. Jørgensen. In Press. Formation of pyrite and elemental sulfur in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term35SO2− 4 reduction measurements. Geochimica et Cosmochimica Acta.

  • Howarth, R. W. and R. Marino. 1984. Sulfate reduction in salt marshes, with some comparisons to sulfate reduction in microbial mats. In: Cohen, Y. R. Castenholtz, and H. O. Halvorson (eds.), Microbial Mats Stromatolites, pp. 246–263. Alan Liss, Inc., New York.

    Google Scholar 

  • Howarth, R. W. and S. Merkel. 1984. Pyrite formation and the measurement of sulfate reduction in salt marsh sediments. Limnology and Oceanography 29: 598–608.

    Google Scholar 

  • Howarth, R. W., and J. M. Teal. 1979. Sulfate reduction in a New England salt marsh. Limnology and Oceanography 24: 999–1013.

    Google Scholar 

  • Howarth, R. W., and J. M. Teal. 1980. Energy flow in a salt marsh ecosystem: the role of reduced inorganic sulfur compounds. American Naturalist 116: 862–872.

    Google Scholar 

  • Jannasch, H. W. and C. O. Wirsen. 1979. Chemosynthetic primary production at East Pacific sea floor spreading centre. BioScience 29: 592–598.

    Google Scholar 

  • Jørgensen, B. B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography 22: 814–832.

    Google Scholar 

  • Jørgensen, B. B. 1982a. Mineralization of organic matter in the sea bed: the role of sulfate reduction. Nature 296: 643–645.

    Google Scholar 

  • Jørgensen, B. B. 1982b. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philosophical Transactions of the Royal Society of London B. 298: 543–561.

    Google Scholar 

  • Jørgensen, B. B. and Y. Cohen. 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology & Oceanography 22: 657–666.

    Google Scholar 

  • Jørgensen, B. B. and T. Fenchel. 1974. The sulfur cycle of a marine sediment model system. Marine Biology 24: 189–201.

    Google Scholar 

  • Jørgensen, B. B. and N. P. Revsbech. 1983. Colorless sulfur bacteria,Beggiatoa sp. and Thiovulum sp., in O2 and H2S microgradients. Applied and Environmental Microbiology 45: 1261–1270.

    Google Scholar 

  • Kaplan, I. R., K. O. Emery, and S. C. Rittenberg. 1963. The distribution and isotopic abundance of sulfur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta 27: 297–331.

    Google Scholar 

  • Kelly, C., and D. W. Schindler. 1984. Sulfate reduction in freshwater sediments. Biogeochemistry 1.

  • Kelly, D. P. 1981. Introduction to chemolithotrophic bacteria. In: Stolp, M. P., H. G. Trüper, A. Balows, and H. G. Schlegel (eds.), The Prokaryotes, pp. 997–1004. Srpinger-Verlag, Berlin.

    Google Scholar 

  • Kelly, D. P. 1982. Biochemistry of chemolithotrophic oxidation of inorganic sulphur. Philosophical Trasactions of the Royal Society of London B. 298: 499–528.

    Google Scholar 

  • Kuenen, J. G. 1975. Colourless sulfur bacteria and their role in the sulfur cycle. Plant and Soil Science 43: 49–76.

    Google Scholar 

  • Kuenen, J. G. and R. F. Beudeker. 1982. Microbiology of thiobacilli and other sulphuroxidiaing autotrophs, mixotrophs, and heterotrophs. Philosophical Transactions of the Royal Society of London B. 298: 473–497.

    Google Scholar 

  • Luther, G. W., A. Giblin, R. W. Howarth, and R. A. Ryans. 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta 46: 2665–2669.

    Google Scholar 

  • Martens, C. S. and J. V. Klump. In press. Biogeochemical cycling in an organic-rich coastal marine basin. 4. An organic carbon budget for sediments dominated by sulfate reducton and methanogenesis. Geochemica et Cosmochimica Acta.

  • McClung, C. R., P. van Berkum, R. E. Davis, and C. Sloger. 1983. Enumeration and localization of N2-fixing bacteria associated with roots ofSpartina alterniflora Loisel. Applied and Environmental Microbiology 45: 1914–1920.

    Google Scholar 

  • Mottl, M. 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geological Society of America Bulletin 94: 161–180.

    Google Scholar 

  • Nelson, D. C. and R. W. Castenholz. 1981a. Use of reduced sulfur compounds by Beggiatoa sp. Journal of Bacteriology 147: 140–157.

    Google Scholar 

  • Nelson, D. C. and R. W. Castenholz. 1981b. Organic nutrition ofBeggiatoa sp. Journal of Bacteriology 147: 236–247.

    Google Scholar 

  • Nelson, D. C. and H. W. Jannasch. In press. Chemoautotrophic growth of a marineBeggiatoa in sulfide-gradient cultures. Archives of Microbiology.

  • Peterson, B. J. and R. W. Howarth. Submitted manuscript. Hydrologic control of Spartina growth and energy flow in a New England salt marsh.

  • Pfennig, N. 1967. Photosynthetic bacteria. Annual Reviews of Microbiology 21: 285–324.

    Google Scholar 

  • Pfennig, N. 1975. The phototrophic bacteria and their role in the sulfur cycle. Plant and Soil 43: 1–16.

    Google Scholar 

  • Pons, L. J., N. van Breeman, and P. M. Driessen. 1982. Physiography of coastal sediments and development of potential soil acidity. In: Acid Sulfate Weathering, pp. 1–10. Soil Science Society of America, Madison, Wisc.

    Google Scholar 

  • Postma, D. 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. American Journal of Science 282: 1151–1183.

    Google Scholar 

  • Rau, G. H. and J. I. Hedges. 1979. Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science 203: 648–649.

    Google Scholar 

  • Revsbeck, N. P., B. B. Jørgensen, and T. H. Blackburn. 1980-a. Oxygen in the seabottom measured with a micro-electrode. Science 207: 1355–1356.

    Google Scholar 

  • Revsbech N. P., J. Sorensen, T. H. Blackburn, and J. P. Lomholt. Distribution of oxygen in marine sediments measured with a micro-electrode. Limnology and Oceanography 25: 403–411.

  • Sorokin, Y. I. 1972. The bacterial population and process of hydrogen sulphide oxidation in the Balck Sea. Journal du Conseil International pour l'Exploration de la Mer 34: 423–455.

    Google Scholar 

  • Sørensen, J. 1982. Reduction of ferric iron in anerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology 43: 319–324.

    Google Scholar 

  • Sørensen, J., B. B. Jorgensen, and N. P. Revsbech. 1979. A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microbial Ecology. 5: 105–115.

    Google Scholar 

  • Tabatabai, M. A. 1984. Importance of sulfur in agriculture. Biogeochemistry 1.

  • Timmer-ten Hoor, A. 1981. Cell yield and bioenergetics ofThiomicrospira denitridicans compared withThiobacillus denitridicans. Antonie van Leeuwenhoek 47: 231–243.

    Google Scholar 

  • Troelsen, H. and B. B. Jørgensen. 1982. Seasonal dynamics of elemental sulfur in two coastal sediments. Estuarine and Coastal Shelf Science 15: 255–266.

    Google Scholar 

  • Utkilen, H. C. 1976. Thiosulfate as electron donor in the blue-green algalAnacystis nidulans. Journal of General Microbilogy 95: 177–180.

    Google Scholar 

  • Valiela, I, J. M. Teal, and N. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass. Limnology and Oceanography 21: 245–252.

    Google Scholar 

  • Vámos, R. and E. Küves. 1972. Role of light in the prevention of the poisoning action of hydrogen sulphide in the rice plant. Journal of Applied Ecology 9: 519–525.

    Google Scholar 

  • Vosjan, J. H. 1974. Sulphate in water and sediment of the Dutch Wadden Sea. Netherlands Journal of Sea Research 8: 208–213.

    Google Scholar 

  • Westrich, J. T. 1983. The consequences and controls of bacterial sulfate reduction in marine sediments. Doctoral Dissertation, Yale University, New Haven, Conn

  • Whittakker, R. H. and G. E. Likens. 1973. Carbon in the biota In: Woodwell, G. M and E. V. Pecan (eds.), Carbon and the Biosphere, pp. 281–302. U. S. Atomic Energy Commission.

  • Woodwell, G. M., P. H. Rich, and C. A. S. Hall. 1973. Carbon in the estuaries. In: Woodwell, G. M. and E. V. Pecan, (eds.), Carbon and the Biosphere, pp. 221–240.

  • Zhabina, N. N., and I. I. Volkov. 1978. A method of determination of various sulfur compounds in sea sediments and rocks. In: W. E. Krumbein, (ed.), Environmental Biogeochemistry and Geomicrobiology, Vol. 3, Methods, Metals, and Assessment, pp. 735–746. Ann Arbor Science Publ., Ann Arbor, Mich.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, R.W. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1, 5–27 (1984). https://doi.org/10.1007/BF02181118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181118

Key words

Navigation