Skip to main content

Advertisement

Log in

Sampling of CSF via the Cisterna Magna and Blood Collection via the Heart Affects Brain Water Content in a Rat SAH Model

  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate whether sampling of cerebrospinal fluid (CSF) via the cisterna magna and of blood via the heart affects brain water content in a rat subarachnoid hemorrhage (SAH) model. Twenty-nine animals were divided into four groups: sham-operated group with sampling of CSF and blood (Sham S+), sham-operated group without sampling of CSF and blood (Sham S−), SAH group with sampling of CSF and blood (SAH S+), and SAH without sampling of CSF and blood (SAH S−). SAH was induced via endovascular perforation of the left internal carotid artery bifurcation. Cerebrospinal fluid via the cisterna magna and blood via cardiac puncture was collected in the Sham S+ and SAH S+ groups before killing the animals for brain water content measurements. Left hemisphere brain water content was significantly higher in the SAH S− group compared with the Sham S− group (p < 0.05) and in Sham S+ group compared with the Sham S− group (p < 0.05). There was no significant difference in brain water content of the left hemisphere between the SAH S+ and Sham S+ groups (p = NS). There was no significant difference in brain water content in other parts of brains. Sampling of CSF and blood affected brain water content in Sham animals and therefore it is not accurate to use these values from Sham animals for comparison with SAH animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  2. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41(8):e519–36.

    Article  PubMed  Google Scholar 

  3. Lad SP, Hegen H, Gupta G, Deisenhammer F, Steinberg GK. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2010;(in press)

  4. Kleindienst A, Schmidt C, Parsch H, Emtmann I, Xu Y, Buchfelder M. The passage of S100B from brain to blood is not specifically related to the blood–brain barrier integrity. Cardiovasc Psychiatry Neurol. 2010;2010:801295.

    PubMed  Google Scholar 

  5. Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010;(in press)

  6. Thal SC, Sporer S, Klopotowski M, Thal SE, Woitzik J, Schmid-Elsaesser R, et al. Brain edema formation and neurological impairment after subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg. 2009;111(5):988–94.

    Article  PubMed  Google Scholar 

  7. Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25(5):554–71.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, et al. Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2010;38(2):612–8.

    Article  PubMed  CAS  Google Scholar 

  9. Wu B, Ma Q, Khatibi N, Chen W, Sozen T, Cheng O, et al. Ac-YVAD-CMK decreases blood–brain barrier degradation by inhibiting caspase-1 activation of Interleukin-1beta in intracerebral hemorrhage mouse model. Transl Stroke Res. 2010;1(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  10. Cipolla MJ, Godfrey JA. Effect of hyperglycemia on brain penetrating arterioles and cerebral blood flow before and after ischemia/reperfusion. Transl Stroke Res. 2010;1(2):127–34.

    Article  PubMed  Google Scholar 

  11. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.

    Article  PubMed  CAS  Google Scholar 

  12. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34. discussion 635.

    PubMed  CAS  Google Scholar 

  13. Nirogi R, Kandikere V, Mudigonda K, Bhyrapuneni G, Muddana N, Saralaya R, et al. A simple and rapid method to collect the cerebrospinal fluid of rats and its application for the assessment of drug penetration into the central nervous system. J Neurosci Methods. 2009;178(1):116–9.

    Article  PubMed  CAS  Google Scholar 

  14. Beeton C, Garcia A, Chandy KG. Drawing blood from rats through the saphenous vein and by cardiac puncture. J Vis Exp. 2007;7:266.

    PubMed  Google Scholar 

  15. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.

    Article  PubMed  Google Scholar 

  16. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35(10):2412–7.

    Article  PubMed  CAS  Google Scholar 

  17. Vargas C, Tannhauser M, Barros HM. Dissimilar effects of lithium and valproic acid on GABA and glutamine concentrations in rat cerebrospinal fluid. Gen Pharmacol. 1998;30(4):601–4.

    Article  PubMed  CAS  Google Scholar 

  18. Clark SR, McMahon CJ, Gueorguieva I, Rowland M, Scarth S, Georgiou R, et al. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J Cereb Blood Flow Metab. 2008;28(2):387–94.

    Article  PubMed  CAS  Google Scholar 

  19. Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56(5):1082–92.

    PubMed  Google Scholar 

  20. Levine DN, Rapalino O. The pathophysiology of lumbar puncture headache. J Neurol Sci. 2001;192(1–2):1–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson Jr JL. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.

    PubMed  CAS  Google Scholar 

  22. Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol. 1998;25(11):867–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by grant NS053407 from the National Institutes of Health to J.H.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duris, K., Manaenko, A., Suzuki, H. et al. Sampling of CSF via the Cisterna Magna and Blood Collection via the Heart Affects Brain Water Content in a Rat SAH Model. Transl. Stroke Res. 2, 232–237 (2011). https://doi.org/10.1007/s12975-010-0063-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0063-z

Keywords

Navigation