Skip to main content
Log in

Review on the Creep Resistance of High-Temperature Titanium Alloy

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Creep property of high-temperature titanium alloys is one of the most important indexes to evaluate their high-temperature performance. The microstructure of titanium alloy materials plays a decisive role in creep resistance. Coarser the grains are and finer the secondary phase is, better is the creep property. Suitable hot deformation parameters, heat treatment processes and surface treatment techniques can be selected to acquire satisfactory microstructure, which can significantly increase the creep property of high-temperature titanium alloys. Adding alloying elements has a significant effect on the improvement of titanium alloy creep resistance. Alloying elements can change the morphology and phase content of high-temperature titanium alloy, thus affecting its creep property. The development direction of creep property of high-temperature titanium alloys is optimization of the type and content of alloying elements, selection of suitable processing conditions and application of appropriate heat treatment or surface treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabort E, Putman D, Reed R C, Acta Mater, 95 (2015) 428.

    Article  CAS  Google Scholar 

  2. Ueda K, Nakaoka S, Narushima T, Mater Trans, 54 (2013) 161.

    Article  CAS  Google Scholar 

  3. Nochovnaya N A, Khorev A I, Yakovlev A L, Metal Sci Heat Treat, 55 (2013) 415.

    Article  CAS  Google Scholar 

  4. Alabort E, Kontis P, Barba D, Dragnevski K, Reed R C, Acta Mater, 105 (2016) 449.

    Article  CAS  Google Scholar 

  5. Zheng Z, Study on Thermal Deformation Behavior and Microstructure and Properties of Sheet of High Temperature Titanium Alloy Reinforced by Nano-Y2O3, M.E. Thesis, Harbin Institute of Technology, China (2019).

  6. Wang Q, Liu J, Yang R, J Aeron Mater, 34 (2014) 1

    Google Scholar 

  7. Cheng C, Lei M., Wan Mi., Cai G, Nonferr Metals Sci Eng, 8 (2017) 51.

    Google Scholar 

  8. K Y Z Zhao Y Q, Qu H, Wu H, Zhou L, Zhou Y G, Zeng W, Yu H Q, Mater Sci Eng A, 282 (2000) 153.

    Article  Google Scholar 

  9. LCMC WF, Zhou L, Luo GZ, Mater. Sci. Eng. A, 323 (2002) 192.

    Article  Google Scholar 

  10. Hao M, Cai J, Du J, J Aeron Mater, 23 (2003) 14.

    CAS  Google Scholar 

  11. GAO X, Study of Microstructure Evolution of Ti60 Titanium alloy during Controlling of Bimodal Structure, Ph. D Thesis Northwestern Polytechnical University, China (2018).

  12. Zhao Y, Titan Ind Prog, (2001) 33.

  13. Wang S, Huang L J, Geng L, Scarpa F, Jiao Y, Peng H X, Sci Rep, 7 (2017).

  14. Chen Z, Li J, Liu J, Wang Q, Liu J, Yang R, J Mater Sci Technol, 26 (2010) 564.

    Article  CAS  Google Scholar 

  15. Barboza M J R, Moura Neto C, Silva C R M, Mater Sci Eng A, 369 (2004) 201.

    Article  Google Scholar 

  16. Barboza M J R, Perez E A C, Medeiros M M, Reis D A P, Nono M C A, Piorino Neto F, Silva C R M, Mater Sci Eng A, 428 (2006) 319.

    Article  Google Scholar 

  17. Oberson P G, Ankem S, Int J Plasticity, 25 (2009) 881.

    Article  CAS  Google Scholar 

  18. Zong Y, Liu P, Guo B, Shan D, Mater Sci Eng A, 620 (2015) 172.

    Article  Google Scholar 

  19. Narayana P L, Kim S-W, Hong J-K, Reddy N S, Yeom J-T, Mater Sci Eng A, 718 (2018) 287.

    Article  CAS  Google Scholar 

  20. Xiyue W, Zhiyong C, Chao C, Jianrong L, Dongsheng X, Qingjiang W, Chinese J Mater Res, 33 (2019) 785.

    Google Scholar 

  21. Huang C, Zhao Y, Xin S, Zhou W, Li Q, Zeng W, J Alloys Compd, 693 (2017) 582.

    Article  CAS  Google Scholar 

  22. Sun H, Zhao J, Liu Y, Zhang Q, Cao J, Huang X, Rare Metal Mater Eng, 48 (2019) 1892.

    Google Scholar 

  23. Zhang C, Effect of Element Y on the Microstructure and Properties of Ti6Al2.5Sn4Zr0.7Mo0.3Si Alloy, M.E. Thesis, Harbin Institute of Technology, China (2009).

  24. Guo H, Effects of Yttrium on Microstructure and Prooerties of Cast Ti6Al3Sn3Zr0.5Mo0.35Si Alloy, M.E. Thesis, Harbin Institute of Technology, China (2008).

  25. Wang T, Li B, Qiao X, Qi P, Nie Z, Mater Sci Eng A, 731(2018),12.

    Article  CAS  Google Scholar 

  26. Yang X, Guo H, Zhao Z, Ning Y, Yuan S, Xin S, International Conference on the Technology of Plasticity, Elsevier Ltd, Hucisko, United kingdom(2017), p 2167.

  27. Han ML, Xu P W, Wan M P, Liang Y L, Du Y P, Liang Y, Rare Metal Mat Eng, 47 (2018) 3768.

    Google Scholar 

  28. Jia W, Zhao H, Hong Q, Li L, Mao X, Mater Charact, 117 (2016) 30.

    Article  CAS  Google Scholar 

  29. Wei T, Yu F, Yan Z, Weidong Z, Saifei Z, Zuojun L, Yunrui B, T Mater Heat Treat, 37 (2016) 57.

    Google Scholar 

  30. Kral P, Dvorak J, Zherebtsov S, Salishchev G, Kvapilova M, Sklenicka V, J Mater Sci, 48 (2013) 4789.

    Article  CAS  Google Scholar 

  31. Grabovetskaya G P, Zabudchenko O V, Mishin I P, Ratochka I V, Lykova O N, Phys Metals Metall, 120 (2019) 499.

    Article  CAS  Google Scholar 

  32. Hosseini R, Morakabati M, Abbasi S M, Hajari A, Mater Sci Eng A, 696 (2017) 155.

    Article  CAS  Google Scholar 

  33. Balasundar I, Raghu T, Kashyap B P, Mater Sci Eng A, 609 (2014) 241.

    Article  CAS  Google Scholar 

  34. Xiao L, Tian S, Bao X, Chen L, Mater Sci Eng A, 529 (2011) 452.

    Article  Google Scholar 

  35. Xiao L, Tian S, Bao X, Chen L, Mater Sci Eng A, 559 (2013) 401.

    Article  Google Scholar 

  36. Omprakash C M, Satyanarayana D V V, Kumar V, T Indian I Metals, 63 (2010) 457.

    Article  CAS  Google Scholar 

  37. Xin S W, Zhao Y Q, Lu Y F, Li Q, Yang H Y, Mater Sci Eng A, 559 (2013) 7.

    Article  CAS  Google Scholar 

  38. Ziaja W, Motyka M, Kubiak K, Sieniawski J, Arch Metall Mate, 61 (2016) 683.

    Article  CAS  Google Scholar 

  39. Deng T, Li D, Li X, Int J Adv Manuf Tech, 95 (2018) 2105.

    Article  Google Scholar 

  40. Reis A G, Pereira Reis D A, Neto C D M, Ribeiro Barboza M J, Neto F P, Onoro J, J Mater Res Technol, 2 (2013) 48.

    Article  Google Scholar 

  41. Oliveira V M C A, Vazquez A M, Aguiar C, Robin A, Barboza M J R, Mater Sci Eng A, 670 (2016) 357.

    Article  CAS  Google Scholar 

  42. de Oliveira V M C A, da Silva M C L, Pinto C G, Suzuki P A, Machado J P B, Chad V M, Barboza M J R, J Mater Res Technol, 4 (2015) 359.

    Article  CAS  Google Scholar 

  43. Deng T., Li S., Jiao L, Xin L, Li K, Nonferr Metals Sci Eng, 9(2018) 94.

    Google Scholar 

  44. Deng T, Li S, Liang Y, Sun L, Zhang Y, J Mater Res Technol, 9 (2020) 5676.

    Article  CAS  Google Scholar 

  45. Chandravanshi V, Sarkar R, Kamat S V, Nandy T K, Metall Mater Trans A, 44A (2013) 201.

    Article  Google Scholar 

  46. Sen I, Tamirisakandala S, Miracle D, Ramamurty U, Acta Mater, 55 (2007) 4983.

    Article  CAS  Google Scholar 

  47. Chen W, Boehlert C J, Metall Mater Trans A, 40 (2009) 1568.

    Article  Google Scholar 

  48. Singh G, Satyanarayana D V V, Pederson R, Datta R, Ramamurty U, Mater Sci Eng A, 597 (2014) 194.

    Article  CAS  Google Scholar 

  49. Prasad K, Sarkar R, Ghosal P, Satyanarayana D V V, Kamat S V, Nandy T K, Mater Sci Eng A, 528 (2011) 6733.

    Article  CAS  Google Scholar 

  50. E-S M, Mater Charact, 46 (2001) 365.

  51. Jia W, Zeng W, Liu J, Zhou Y, Wang Q, Mater Sci Eng A, 530 (2011) 511.

    Article  CAS  Google Scholar 

  52. Zhang W-J, Song X-Y, Hui S-X, Ye W-J, Wang W-Q, Rare Metals, 37 (2018) 1064.

    Article  CAS  Google Scholar 

  53. Zhang L-J, Chen Z-Y, Hu Q-M, Yang R, J Alloys Compd, 740 (2018) 156.

    Article  CAS  Google Scholar 

  54. Li Y, Chen Y, Liu J-R, Hu Q-M, Yang R, Sci Rep, 6 (2016).

  55. Gao G, Effect of Si,Mo and Y Content on Microstructure and Properties of Ti55 Alloy, MS Thesis, Harbin Institute of Technology, China(2016).

  56. Li S, Chen Z, Wang Z, Liu J, Wang Q, Yang R, Acta Metall Sinica, 49 (2013) 464.

    Article  CAS  Google Scholar 

  57. Yang Y F, Luo S D, Schaffer G B, and Qian M, Mater Sci Eng A, 573 (2013) 166.

    Article  CAS  Google Scholar 

  58. Zhao P, Wang Q, Adv Mater Process, 80 (2012), 1.

    Google Scholar 

  59. Liang Z, Jianrong L, Qingjiang W, Rui Y, Chinese J Mater Res 23 (2009) 1.

    CAS  Google Scholar 

  60. Wang X, Rare Metal Mat Eng 44 (2015) 243.

    CAS  Google Scholar 

  61. Beibei D, Li B, Peng H, Zuoren N, Hot Working Tech, 40 (2011) 4.

    Google Scholar 

  62. Zhang S Z, Zhou B, Liu N, Chen L Q, Oxid Metals, 81 (2014) 373.

    Article  CAS  Google Scholar 

  63. Haifang T, Yongqing Z, Quan H, Liying Z, Titan Ind Prog, 27 (2010) 16.

    Google Scholar 

  64. Xin S, Hong Q, Lu Y, Xi Z, Guo P, Qi Y, Zeng L, Chinese J Nonferr Metals, 20 (2010) 2142.

    CAS  Google Scholar 

  65. Tang H, Hong Q, Zhao Y, Wang Z, Hot Working Tech 39 (2010) 11.

    Google Scholar 

  66. Tang H, Study on Microstucture and High Temperature Properties of Ti600 Alloy, M.S. Thesis, Northeastern University, China (2010).

  67. Zhang Z, Hong Q, Yang G, Luo G, J Mater Eng (2000) 18.

  68. Peng H, Influence of Erbium on Microstructure and Properties of high Temperature Alloy, M.E. Thesis, Beijing University of Technology, China (2012).

  69. Peng H, Li B, Jiaming Y, Tong L, Zuoren N, Sci Technol Eng, 12 (2012) 4124.

    Google Scholar 

  70. Wu Y, Guo Y, Xu G, Chang H, Cui Y, Metals, 9 (2019) 628.

    Article  Google Scholar 

  71. Cai J, Ma J, Huang X, Cao C, J Mater Eng, 8 (2009) 84.

    Google Scholar 

  72. Huang Y, Jiang V, Shen J, Mater Sci Technol 21 (2013) 117.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support of Natural Science Foundation of Jiangxi province (NO.20192BAB216005), Science and Technology Research Program of Jiangxi Educational Committee (NO.GJJ170550). Authors are also thankful to Xinxin Wu and Xiaoqiang Wang for their assistance in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongsheng Deng or Yinghui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Deng, T., Zhang, Y. et al. Review on the Creep Resistance of High-Temperature Titanium Alloy. Trans Indian Inst Met 74, 215–222 (2021). https://doi.org/10.1007/s12666-020-02137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02137-x

Keywords

Navigation