Skip to main content
Log in

Valorization of Corn-Cob by Fungal Isolates for Production of Xylanase in Submerged and Solid State Fermentation Media and Potential Biotechnological Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The increasing awareness of importance of xylanases in various industrial processes has led to intensive research in effective production of xylanases. In this study, eight fungal strains were screened for the production of xylanases in submerged (SmF) and solid state fermentations (SSF) in corncob-based media. Positive results of reddish orange halo-zones of hydrolysis were obtained for qualitative screening. In SmF, xylanase activity from Aspergillus fumigatus SD5A yielded highest activity (50.55 U/ml) in 168 h, while Aspergillus flavus SD4A, A. fumigatus L1, Fusarium solani SD3C, Aspergillus niger L3, Trichoderma longibrachiatum L2, Botryodiplodia sp. L5 and A. flavus L4, showed xylanase activities ranging from 10.38 to 44.81 U/ml. In SSF, xylanase activities ranged from 12.30 to 48.63 U/g in 120 h, with the highest activity obtained from A. fumigatus L1. Optimum temperatures for xylanases obtained in SmF ranged from 55 to 70 °C, while that of SSF ranged from 50 to 70 °C. Also, the optimum pH for xylanases obtained in both SmF and SSF ranged from 5.0 to 7.0. All the fungi did not produce aflatoxin on neutral red desiccated coconut agar. The fungal xylanases improved dough rising of bread and clarification of orange juice by 1.87–2.2-folds and 58.12–74.22% respectively. The results reported here showed that the range of characteristics exhibited by the xylanases could make them widely applicable in various industries, and also an important way for the valorization of agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar, L., Kumar, D., Nagar, S., Gupta, R., Garg, N., Kuhad, R.C., Gupta, V.K.: Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech. 4, 345–356 (2014)

    Article  Google Scholar 

  2. Won-Jae, C., Da Yeon, P., Yong-Keun, C., Soon-Kwang, H.: A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification, and characterization. Appl. Biochem. Biotechnol. 168(4), 899–909 (2012)

    Article  Google Scholar 

  3. Silva, L.A.O., Terrasan, C.R.F., Carmona, E.C.: Purification and characterization of xylanases from Trichoderma inhamatum. Electron. J. Biotechnol. 18, 307–313 (2015)

    Article  Google Scholar 

  4. Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)

    Article  Google Scholar 

  5. Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228 (2003)

    Article  Google Scholar 

  6. Svarachorn, A.: Production of fungal–xylanase using agricultural waste by solid state fermentation. J. Sci. Res. Chulalongkon Univ. 24(1), 13–20 (1999)

    Google Scholar 

  7. Kanimozhi, K., Nagalakshmi, P.K.: Xylanase production from Aspergillus niger by solid state fermentation using agricultural waste as substrate. Inter. J. Curr. Microbiol. Appl. Sci. 3(3), 437–446 (2014)

    Google Scholar 

  8. Goulart, A.J., Carmona, E.C., Monti, R.: Partial purification and properties of cellulase-free alkaline xylanase produced by Rhizopus stolonifer in solid-state fermentation. Braz. Arch. Biol. Technol. 48, 327–333 (2005)

    Article  Google Scholar 

  9. Yegin, S., Buyukkileci, A.O., Sargin, S., Goksungur, Y.: Exploitation of agricultural wastes and by-products for production of Aureobasidium pullulans Y-2311-1 xylanase: screening, bioprocess optimization and scale up. Waste Biomass Valoriz. (2016). doi:10.1007/s12649-016-9646-6

    Google Scholar 

  10. Bedford, M.R., Classen, H.L., 1992. The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chick. In: Visser, J., Beldman, G., van Someren, M.A.K., Voragen, A.G.J. (eds) Xylans and xylanases, pp 361–370. Elsevier, Amsterdam.

    Google Scholar 

  11. Wong, K.K.Y., Saddler, J.N.: Trichoderma xylanases, their properties and purification. Crit. Rev. Biotechnol. 12, 413–435 (1992)

    Article  Google Scholar 

  12. Beg, Q.K., Bhushan, B., Kapoor, M., Hoondal, G.S.: Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27, 459–466 (2000)

    Article  Google Scholar 

  13. Harris, A.D., Ramalingam, C.: Xylanase and its application in food Industry: a review. J. Exper. Sci. 1(7), 1–11 (2010)

    Google Scholar 

  14. Kapoor, M., Beg, Q.K., Bhushan, B., Singh, K., Dadhich, K.S., Hoondal, G.S.: Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem. 36, 803–807 (2001)

    Article  Google Scholar 

  15. Lateef, A., Oloke, J.K., Gueguim Kana, E.B., Oyeniyi, S.O., Onifade, O.R., Oyeleye, A.O., Oladosu, O.C., Oyelami, A.O.: Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24, 2369–2374 (2008)

    Article  Google Scholar 

  16. Lateef, A., Ojo, M.O.: Public health issues in the processing of Cassava (Manihot esculenta) for production ‘Lafun’ and the application of hazard analysis control measures. Qual. Assur. Saf. Crops Foods. 8, 165–177 (2016)

    Article  Google Scholar 

  17. Mohammed, I.J.: Screening of fungi isolated from environmental samples for xylanase and cellulase production. Inter. Scholarly Res. Notices: Microbiol. (2013). doi:10.1155/2013/283423

    Google Scholar 

  18. Domsch, K.H., Gams, W., erson, T.H.: Paecilomyces. In: Compendium of soil fungi, pp. 530–532. Academic Press, London (1980)

    Google Scholar 

  19. Lateef, A., Gueguim Kana, E.B.: Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Rom. Biotechnol. Lett. 17(3), 7309–7316 (2012)

    Google Scholar 

  20. Sridevi, B., Charya, M.A.S.: Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr. J. Biotechnol. 10(22), 4624–4630 (2011)

    Google Scholar 

  21. Bailey, M.J., Biely, P., Poutanen, K.: Interlaboratory testing for methods of assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992)

    Article  Google Scholar 

  22. Bajaj, B.K., Abbass, M.: Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28. 3 Biotech. 1, 161–171 (2011)

    Article  Google Scholar 

  23. Ahmed, S., Imdad, S.S., Jamil, A.: Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and. Chaetomium thermophilum. Electron. J. Biotechnol. 15(3), 1–8 (2012)

    Article  Google Scholar 

  24. Ahmed, S.A., Saleh, S.A.A., Mostafaa, F.A., El Atya A.A.: Characterization and valuable applications of xylanase from endophytic fungus Aspergillus terreus KP900973: isolated from Corchorus olitorius. Biocatal. Agric. Biotechnol. (2016).doi:10.1016/j.bcab.2016.05.015

    Google Scholar 

  25. Atanda, O.O., Ogunrinu, M.C., Olorunfemi, F.M.: A neutral red dessicated coconut agar for rapid detection of aflatoxigenic fungi and visual determination of aflatoxins. World Mycotoxin J. 4, 147–155 (2011)

    Article  Google Scholar 

  26. Taher, I.B., Bennour, H., Fickers, P., Hassouna, M.: Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste and Biomass Valoriz. (2016). doi:10.1007/s12649-016-9558-5

    Google Scholar 

  27. Ganaie, M.A., Lateef, A., Gupta, U.S.: Enzymatic trends of fructooligosaccharides production by microorganisms. Appl. Biochem. Biotechnol. 172(4), 2143–2159 (2014)

    Article  Google Scholar 

  28. Shankar, J.: An overview of toxins in Aspergillus associated with pathogenesis. Inter. J. Life Sci. Biotechnol. Pharma. Res. 2(2), 16–31 (2013)

    Google Scholar 

  29. Ramírez-Camejo, L.A., Zuluaga-Montero, A., Lázaro-Escudero, M.A., Hernández-Kendall, V.N., Bayman, P.: Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol. 116(3), 452–463 (2012)

    Article  Google Scholar 

  30. De Guadalupe Moctezuma-Zárate, M., Vargas-Morales, J.M., Cárdenas-González, J.F., Martínez-Juárez, V.M., Acosta-Rodríguez, I.: Induction of extracellular lytic enzymes by Fusarium solani. Adv. Microbiol. 3, 24–30 (2013)

    Article  Google Scholar 

  31. Gupta, V.J., Gaur, R., Yadava, S.K., Darmwal, N.S.: Optimization of xylanase production from free and immobilized cells of Fusarium solani F7. BioResources. 4(3), 932–945 (2009)

    Google Scholar 

  32. Arabi, M.I.E, Bakri, Y., Jawhar, M.: Extracellular xylanase production by Fusarium species in solid state fermentation. Polish J. Microbiol. 60(3), 209–212 (2011)

    Google Scholar 

  33. Nagar, S., Mittal, A., Gupta, V.K.: Enzymatic clarification of fruit juices (apple, pineapple, and tomato) using purified Bacillus pumilus SV-85S xylanase. Biotechnol. Bioprocess Eng. 17, 1165–1175 (2012)

    Article  Google Scholar 

  34. Sudan, R., Bajaj, B.K.: Production and biochemical characterization of xylanase from an alkalitolerant novel species Aspergillus niveus RS2. World J. Microbiol. Biotechnol. 23, 491–500 (2007)

    Article  Google Scholar 

  35. Chapla, D., Divecha, J., Madamwar, D., Shah, A.: Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J. 49(3), 361–369 (2010)

    Article  Google Scholar 

  36. Antoine, A.A., Jacqueline, D., Thonart, P.: Xylanase production by Penicillium canescens on soy oil cake in solid-state fermentation. Appl. Biochem. Biotechnol. 160, 50–62 (2010)

    Article  Google Scholar 

  37. Nair, S.G., Sindhu, R., Shankar, S.: Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS45. Appl. Biochem. Biotechnol. 149, 229–243 (2008)

    Article  Google Scholar 

  38. De Carvalho Peixoto-Nogueira, S., Michelin, M., Betini, J.H.A., Jorge, J.A., Terenzi, H.F., de Moraes, M.D.L.T.: Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J. Ind. Microbiol. Biotechnol. 36, 149–155 (2009)

    Article  Google Scholar 

  39. Bajaj, B.K., Singh, N.P.: Production of xylanase from an alkalitolerant sp. 7b under solid-state fermentation, its purification, and characterization. Appl. Biochem. Biotechnol. 162, 1804–1818 (2010)

    Article  Google Scholar 

  40. Tallapragada, P., Venkatesh, K.: Isolation, identification and optimization of xylanase enzyme produced by Aspergillus niger under submerged fermentation. J. Microbiol. Biotechnol. Res. 1(4), 137–147 (2011)

    Google Scholar 

  41. Murthy, P.S., Naidu, M.M.: Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol. 5(2), 657–664 (2012)

    Article  Google Scholar 

  42. Ruckmani, A., Rajendran, A.: Production of cellulase-poor xylanase by an alkalitolerant strain of Aspergillus flavus. Indian J. Microbiol. 41, 115–118 (2001)

    Google Scholar 

  43. Polizeli, M.L.T.M., Rizzati, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorin, D.S.: Xylanases from fungi: Properties and industrial applications. Appl. Biochem. Biotechnol. 67(5), 577–591 (2005)

    Google Scholar 

  44. Srinivasan, M.C., Rele, M.V.: Microbial xylanases for paper industry. Curr. Sci. 77, 137–142 (1999)

    Google Scholar 

  45. Dutta, T., Sengupta, R., Sahoo, R., Sinha-Ray, S., Bhattacharjee, A., Ghosh, S.: A novel cellulase-free alkaliphilic xylanase from alkalitolerant Penicillium citrinum: production, purification and characterization. Lett. Appl. Microbiol. 44, 206–211 (2007)

    Article  Google Scholar 

  46. Huang, L., Hseu, T.H., Wey, T.T.: Purification and characterization of an endoxylanase from Trichoderma koningii G-39. Biochemical J. 278(2), 329–333 (1991)

    Article  Google Scholar 

  47. Raj, K.C., Chandra, T.S.: Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiol. Lett. 145(3), 457–461 (1996)

    Article  Google Scholar 

  48. Lucena-neto, S.A., Ferreira-filho, E.X.: Purification and characterization of a new xylanase from Humicola grisea var. Thermoidea. Braz. J. Microbiol. 35(1–2), 86–90 (2004)

    Google Scholar 

  49. Bakri, Y., Masson, M., Thonart, P.: Isolation and identification of two new fungal strains for xylanase production. Appl. Biochem. Biotechnol. 162, 1626–1634 (2010)

    Article  Google Scholar 

  50. Maalej, I., Belhaj, I., Masmoudi, N.F., Belghith, H.: Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Appl. Biochem. Biotechnol. 158, 200–212 (2009)

    Article  Google Scholar 

  51. Kulkarni, N., Shendye, A., Rao, M.: Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23(4), 411–456 (1999)

    Article  Google Scholar 

  52. Franco, P.F., Ferreira, H.M., Filho, E.X.F.: Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Biotechnol. Appl. Biochem. 40(3), 255–259 (2004)

    Article  Google Scholar 

  53. Chipeta, Z.A., Preez, J.C., Szakacs, G., Christopher, L.: Xylanase production by fungal strains on spent sulphite liquor. Appl. Microbiol. Biotechnol. 69(1), 71–78 (2005)

    Article  Google Scholar 

  54. Subramanian, S., Prema, P.: Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7 (2000)

    Article  Google Scholar 

  55. Fialho, M.B., Carmona, E.C.: Purification and characterization of xylanases from Aspergillus giganteus. Folia Microbiol. 49(1), 13–18 (2004)

    Article  Google Scholar 

  56. Ratanachomsri, U., Sriprang, R., Sornlek, W., Buaban, B., Champreda, V., Tanapongpipat, S., Eurwilaichitr, L.: Thermostable xylanase from Marasmius sp.: purification and characterization. J. Biochem. Mol. Biol. 39(1), 105–110 (2006)

    Google Scholar 

  57. Butt, M.S., Nadeem, M.T., Ahmad, Z., Sultan, M.T.: Xylanases and their applications in baking industry. Food Technol. Biotechnol. 46, 22–31 (2008)

    Google Scholar 

  58. Kaltsa, O., Georgopoulos, T., Yanniotis, S., Mandala, L.: Effect of enzyme blends and dough strengthening emulsifier on extending the shelf life of sandwich bread applying response surface methodology. Inter. J. Innov. Res. Sci. Eng. Technol. 3(4), 149–160 (2013)

    Google Scholar 

  59. Bajaj, B.K., Manhas, K.: Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry. Biocatal. Agric. Biotechnol. 1, 330–337 (2012)

    Google Scholar 

  60. Dhiman, S.S., Garg, G., Sharma, J., Mahajan, R.: Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnol. 28(6), 746–755 (2011)

    Article  Google Scholar 

  61. Rai, P., Majumdar, G.C., Gupta, S.D., De, S.: Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. J. Food Eng. 64, 397–403 (2003)

    Article  Google Scholar 

  62. Kumar, L., Nagar, S., Mittal, A., Garg, N., Gupta, V.K.: Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J. Food Sci. Technol. 51(9), 1737–1749 (2014)

    Article  Google Scholar 

  63. Uçan, F., Akyildiz, A., Agçam, E.: Effects of different enzymes and concentrations in the production of clarified lemon juice. J. Food Processing. (2014).doi:10.1155/2014/215854

    Google Scholar 

  64. Pal, A., Khanum, F.: Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulase to improve yield and clarity of pineapple juice. J. Food Sci. Technol. 48(5), 560–568 (2011)

    Article  Google Scholar 

  65. Díaz, A.B., Alvarado, O., de Ory, I., Caro, I., Blandino, A.: Valorization of grape pomace and orange peels: improved production of hydrolytic enzymes for the clarification of orange juice. Food Bioprod. Process. 91, 580–586 (2013)

    Article  Google Scholar 

  66. Olfa, E., Mondher, M., Issam, S., Ferid, L., Nejib, N.M.: Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Chem. 31, 96–107 (2007)

    Google Scholar 

  67. Shah, S.: Optimization of an enzyme assisted process for juice extraction and clarification from litchis (Litchi chinensis Sonn.). Inter. J. Food Eng. 3(3), 1–17 (2007)

    Article  Google Scholar 

  68. Ahmad, I., Jha, Y.K., Anurag, R.K.: Optimization of enzymic extraction process for higher yield and clarity of guava juice. J. Food Sci. Technol. 46, 307–311 (2009)

    Google Scholar 

  69. Lateef, A., Gueguim-Kana, E.B.: Quality assessment and hazard analysis in the small-scale production of poultry feeds in Ogbomoso, Southwest, Nigeria. Qual. Assur. Saf. Crops Foods. 6(1), 105–113 (2014)

    Article  Google Scholar 

  70. Moss, M.O.: Risk assessment for aflatoxins in food stuffs. Inter. Biodeterior. Biodegrad. 50(3–4), 137–142 (2002)

    Article  Google Scholar 

  71. Saleemullah, A.L., Khalil, I.A., Shah, H.: Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chem. 98, 699–703 (2006)

    Article  Google Scholar 

  72. Abbas, H.K., Shier, W.T., Horn, B.W., Weaver, M.A.: Cultural methods for aflatoxin detection. J. Toxicol. 23(2&3), 295–315 (2004)

    Google Scholar 

  73. Atanda, O.O., Akpan, I., Enikuomehin, O.A.: Palm kernel agar: an alternative culture medium for rapid detection of aflatoxins in agricultural commodities. Afr. J. Biotechnol. 5, 1029–1033 (2006)

    Google Scholar 

  74. Ezekiel, C.N., Adetunji, M.C., Atanda, O.O., Frisvad, J.C., Houbraken, J., Samson, R.A.: Phenotypic differentiation of species from Aspergillus section Flavi on neutral red desiccated coconut agar. World Mycotoxin J. 7(3), 335–344 (2014)

    Article  Google Scholar 

  75. Ezekiel, C.N., Kayode, F.O., Fapohunda, S.O., Olorunfemi, M.F., Kponi, B.T.: Aflatoxigenic moulds and aflatoxins in street-vended snacks in Lagos, Nigeria. Internet J. Food Saf. 14, 83–88 (2012)

    Google Scholar 

Download references

Acknowledgements

AL is grateful to the authority of LAUTECH, Ogbomoso, Nigeria for the provision of some of the facilities used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lateef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elegbede, J.A., Lateef, A. Valorization of Corn-Cob by Fungal Isolates for Production of Xylanase in Submerged and Solid State Fermentation Media and Potential Biotechnological Applications. Waste Biomass Valor 9, 1273–1287 (2018). https://doi.org/10.1007/s12649-017-9932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9932-y

Keywords

Navigation