Skip to main content

Advertisement

Log in

Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) may be due to a bump, blow, or jolt to the head or a penetrating head injury that disrupts normal brain function; it presents an ever-growing, serious public health problem that causes a considerable number of fatalities and cases of permanent disability annually. Physical exercise restores the healthy homeostatic regulation of stress, affect and the regulation of hypothalamic–pituitary–adrenal axis. Physical activity attenuates or reverses the performance deficits observed in neurocognitive tasks. It induces anti-apoptotic effects and buttresses blood–brain barrier intactness. Exercise offers a unique non-pharmacologic, non-invasive intervention that incorporates different regimes, whether dynamic or static, endurance, or resistance. Exercise intervention protects against vascular risk factors that include hypertension, diabetes, cellular inflammation, and aortic rigidity. It induces direct changes in cerebrovasculature that produce beneficial changes in cerebral blood flow, angiogenesis and vascular disease improvement. The improvements induced by physical exercise regimes in brain plasticity and neurocognitive performance are evident both in healthy individuals and in those afflicted by TBI. The overlap and inter-relations between TBI effects on brain and cognition as related to physical exercise and cognition may provide lasting therapeutic benefits for recovery from TBI. It seems likely that some modification of the notion of scaffolding would postulate that physical exercise reinforces the adaptive processes of the brain that has undergone TBI thereby facilitating the development of existing networks, albeit possibly less efficient, that compensate for those lost through damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albensi BC (2001) Models of brain injury and alterations in synaptic plasticity. J Neurosci Res 65:279–283

    Article  PubMed  CAS  Google Scholar 

  • Andersson EH, Björklund R, Emanuelson I, Stålhammar D (2003) Epidemiology of traumatic brain injury: a population based study. Acta Neurol Scand 107:256–259

    Article  PubMed  CAS  Google Scholar 

  • Ang ET, Gomez-Pinilla F (2007) Potential therapeutic effects of exercise to the brain. Curr Med Chem 14:2564–2571

    Article  PubMed  CAS  Google Scholar 

  • Ang ET, Wong PT, Moochhala S, Ng YK (2003) Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 118:335–345

    Article  PubMed  CAS  Google Scholar 

  • Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 3:CD005381

    PubMed  Google Scholar 

  • Angevaren M, Vanhees L, Wendel-Vos W et al (2007) Intensity, but not duration, of physical activities is related to cognitive function. Eur J Cardiovasc Prev Rehabil 14:825–830

    Article  PubMed  Google Scholar 

  • Archer T (2011) Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand 123:221–238

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A (2010) Physical exercise attenuates MPTP-induced deficits in mice. Neurotoxic Res 18:313–327

    Article  Google Scholar 

  • Archer T, Kostrzewa RM (2011) Physical exercise alleviates ADHD symptoms: regional deficits and developmental trajectory. Neurotox Res. doi:10.1007/s12640-011-9260-0

  • Archer T, Kostrzewa RM, Beninger RJ, Palomo T (2010) Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotoxicity Res 18:287–305. doi:10.1007/s12640-010-9162-6

    Google Scholar 

  • Archer T, Fredriksson A, Johansson B (2011) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurol Scand. doi:10.1111/j.1600-0404.2010.01360.x, 2010

  • Archer T, Fredriksson A, Schütz E, Kostrzewa RM (2011b) Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotoxic Res 20:69–83

    Article  Google Scholar 

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290

    Article  PubMed  CAS  Google Scholar 

  • Babikian T, Prins ML, Cai Y, Barkhoudarian G, Hartonian I, Hovda DA, Giza CC (2010) Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism. Dev Neurosci 32:431–441

    PubMed  CAS  Google Scholar 

  • Bazarian JJ, Blyth B, Cimpello L (2006) Bench to bedside: evidence for brain injury after concussion—looking beyond the computed tomography scan. Acad Emerg Med 13:199–214

    PubMed  Google Scholar 

  • Beavers KM, Brinkley TE, Nicklas BJ (2010) Effect of exercise training on chronic inflammation. Clin Chim Acta 411:785–793

    Article  PubMed  CAS  Google Scholar 

  • Benvenga S (2005) Brain injury and hypopituitarism: the historical background. Pituitary 8:193–195

    Article  PubMed  Google Scholar 

  • Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neurosci 167:588–597

    Article  CAS  Google Scholar 

  • Blumenthal J, Babyak M, Moore KA, Craighead WE, Herman S (1999) Effects of exercise training on older patients with major depression. Arch Intern Med 159:2349–2356

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal J, Babyak M, Doraiswamy P et al (2007) Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med 69:587–596

    Article  PubMed  CAS  Google Scholar 

  • Borg J, Röe C, Nordenbo A, Andelic N, de Boussard C, Af Geijerstam JL (2011) Trends and challenges in the early rehabilitation of patients with traumatic brain injury: a Scandinavian perspective. Am J Phys Med Rehabil 90:65–73

    Article  PubMed  Google Scholar 

  • Bosenberg AT, Brock-Utne JG, Gaffin SL et al (1988) Strenuous exercise causes systemic endotoxemia. J Appl Physiol 65:106–108

    PubMed  CAS  Google Scholar 

  • Boulanger LM, Poo MM (1999) Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 2:346–351

    Article  PubMed  CAS  Google Scholar 

  • Broman-Fulks JJ, Storey KM (2008) Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity. Anxiety Stress Coping 21:117–128

    Article  PubMed  Google Scholar 

  • Brooks A, Meyer T, Gleiter C et al (2001) Effect of aerobic exercise on behavioral and neuroendocrine responses to meta-chlororphenylpiperazine and ipsapirone in untrained healthy subjects. Psychopharmacology 155:234–241

    Article  Google Scholar 

  • Brooks A, Meyer T, Opitz M et al (2003) 5HT1A responsivity in patients with panic disorder before and after treatment with aerobic exercise, clomipramine or placebo. Eur Neuropsychopharmaco l13:153–164

    Article  CAS  Google Scholar 

  • Bryant RA (2011) Mental disorders and traumatic injury. Depress Anxiety 28:99–102. doi:10.1002/da.20786

    Article  PubMed  Google Scholar 

  • Campbell JE, Rakhshani N, Fediuc S, Bruni S, Riddell MC (2009) Voluntary wheel running initially increases adrenal sensitivity to adrenocorticotrophic hormone, which is attenuated with long-term training. J Appl Physiol 106:66–72

    Article  PubMed  Google Scholar 

  • Campeau S, Nyhuis TJ, Sasse SK, Kryskow EM, Herlihy L, Masini CV, Babb JA, Greenwood BN, Fleshner M, Day HE (2010) Hypothalamic pituitary adrenal axis responses to low-intensity stressors are reduced after voluntary wheel running in rats. J Neuroendocrinol 22:872–888

    PubMed  CAS  Google Scholar 

  • Camus G, Poortmans J, Nys M et al (1997) Mild endotoxemia and the inflammatory response induced by a marathon race. Clin Sci 92:415–422

    PubMed  CAS  Google Scholar 

  • Cantor JB, Ashman TA, Schwartz ME, Gordon WA, Hibbard MR, Brown M, Spielman L, Charatz HJ, Cheng Z (2005) The role of self-discrepancy theory in understanding post-traumatic brain injury affective disorders: a pilot study. J Head Trauma Rehabil 20:527–543

    Article  PubMed  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor 1 mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    PubMed  CAS  Google Scholar 

  • Carroll E, Coetzer R (2011) Identity, grief and self-awareness after traumatic brain injury. Neuropsychol Rehabil 21:289–305

    Article  PubMed  Google Scholar 

  • Cernak I, Chang T, Ahmed FA, Cruz MI, Vink R, Stoica B, Faden AI (2010) Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 32:442–453

    PubMed  CAS  Google Scholar 

  • Chamelian L, Feinstein C (2006) The effect of major depression on subjective and objective cognitive deficits in moild to moderate traumatic brain injury. J Neuropsychiatr Clin Neurosci; 18:33–38

    Article  Google Scholar 

  • Chan F, Lanctôt KL, Feinstein A, Herrmann N, Strauss J, Sicard T, Kennedy JL, McCullagh S, Rapoport MJ (2008) The serotonin transporter polymorphisms and major depression following traumatic brain injury. Brain Inj 22:471–479

    Article  PubMed  Google Scholar 

  • Chen YH, Kang JH, Lin HC (2011) Patients with traumatic brain injury: population-based study suggests increased risk of stroke. Stroke 42:2733–2739

    Article  PubMed  Google Scholar 

  • Clausen F, Marklund N, Lewén A et al (2011) Interstitial F2-isoprostane 8-iso-PGF2α as a biomarker of oxidative stress following severe human traumatic brain injury. J Neurotrauma. doi:10.1089/neu.2011.1754

  • Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, Swerdloff R, Vespa P, Muizelaar JP, Cryer HG, Christenson PD, Kelly DF (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33:2358–2366

    Article  PubMed  CAS  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472

    Article  PubMed  CAS  Google Scholar 

  • Cubrilo D, Djordjevic D, Zivkovic V, Djuric D, Blagojevic D, Spasic M, Jakovljevic V (2011) Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type. Mol Cell Biochem 355:273–279

    Google Scholar 

  • Cunningham RM, Maio RF, Hill EM, Zink BJ (2002) The effects of alcohol on head injury in the motor vehicle crash victim. Alcohol Alcohol 37:236–240

    PubMed  Google Scholar 

  • De Bode S, Mathern GW, Bookheimer S, Dobkin B (2007) Locomotor training remodels fMRI sensorimotor cortical activations in children after cerebral hemispherectomy. Neurorehabil Neural Repair 21:497–508

    Article  PubMed  Google Scholar 

  • Dechamps A, Diolez P, Thiaudiere E et al (2010) Effects of exercise programs to prevent decline in health related quality of life in highly deconditioned institutionalized elderly persons: a randomized controlled trial. Arch Intern Med 170:162–169

    Article  PubMed  Google Scholar 

  • Dejong G, Hsieh CH, Putman K, Smout RJ, Horn SD, Tian W (2011) Physical therapy activities in stroke, knee arthroplasty, and traumatic brain injury rehabilitation: their variation, similarities, and association with functional outcomes. Phys Ther 91:1826–1837

    Google Scholar 

  • Derbré F, Gomez-Cabrera MC, Nascimento AL, Sanchis-Gomar F, Martinez-Bello VE, Tresguerres JA, Fuentes T, Gratas-Delamarche A, Monsalve M, Viña J (2011) Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. Age. doi:10.1007/s11357-011-9264-y

  • Deslandes A, Moraes H, Ferreira C et al (2009) Exercise and mental health: many reasons to move. Neuropsychobiolog 59:191–198

    Article  Google Scholar 

  • Dikman S, Bombardier C, Machamer J et al (2004) Natural history of depression in traumatic brain injury. Arch Phys Med Rehabil 85:1457–1464

    Article  Google Scholar 

  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833

    Google Scholar 

  • Ding Q, Ying Z, Gomez-Pinilla F (2011) Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 192:773–780

    Article  PubMed  CAS  Google Scholar 

  • Dishman RK, Bunnell BN, Youngstedt SD, Yoo HS, Mougey EH, Meyerhoff JL (1998) Activity wheel running blunts increased plasma adrenocorticotrophin (ACTH) after footshock and cage-switch stress. Physiol Behav 63:911–917

    Article  PubMed  CAS  Google Scholar 

  • Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118

    Article  PubMed  Google Scholar 

  • Dressler J, Vemuganti R (2009) Apoptosis and gene expression after TBI. Leg Med (Tokyo) 11(Suppl 1):S54–S55

    Article  Google Scholar 

  • Dunn A, Trivedi M, Kampert J et al (2005) Exercise treatment for depression: efficacy and dose response. Am J Prev Med 28:1–8

    Article  PubMed  Google Scholar 

  • Dusick JR, Wang C, Cohan P, Swerdloff R, Kelly DF (2008) Chapter 1: pathophysiology of hypopituitarism in the setting of brain injury. Pituitary. May 15. PMID: 18481181

  • Ekmark-Lewén S, Lewén A, Meyerson BJ, Hillered L (2010) The multivariate concentric square field test reveals behavioral profiles of risk taking, exploration, and cognitive impairment in mice subjected to traumatic brain injury. J Neurotrauma 27:1643–1655

    Article  PubMed  Google Scholar 

  • Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schröck H, Nickenig G, Kuschinsky W, Dirnagl U, Laufs U (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54:582–590

    Article  PubMed  Google Scholar 

  • Evers A, Klusmann V, Schwarzer R, Heuser I (2011) Improving cognition by adherence to physical or mental exercise: a moderated mediation analysis. Aging Ment Health 15:446–455

    Article  PubMed  Google Scholar 

  • Eynon N, Moran M, Birk R, Lucia A. (2011) The champions’ mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics 43:789–798

    Google Scholar 

  • Fann J, Katon W, Uomoto J, Esselman P (1995) Psychiatric disorders and functional disability in outpatients with traumatic brain injuries. Am J Psychiatry 152:1493–1499

    PubMed  CAS  Google Scholar 

  • Fann J, Jones A, Dikman S et al (2009) Depression treatment preferences after traumatic brain injury. J Head Trauma Rehabil 24:272–278

    Article  PubMed  Google Scholar 

  • Fatouros I, Chatzinikolaou A, Paltoglou G, Petridou A, Avloniti A, Jamurtas A, Goussetis E, Mitrakou A, Mougios V, Lazaropoulou C, Margeli A, Papassotiriou I, Mastorakos G (2010) Acute resistance exercise results in catecholaminergic rather than hypothalamic-pituitary-adrenal axis stimulation during exercise in young men. Stress 13:461–468

    PubMed  CAS  Google Scholar 

  • Faul M, Xu L, Wald MM, Coronado VG (2010) Emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for injury Prevention and Control, Atlanta

    Google Scholar 

  • Fisher JP, Ogoh S, Young CN, Raven PB, Fadel PJ (2008) Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: influence of aging. J Appl Physiol 105:266–273

    Article  PubMed  Google Scholar 

  • Fordyce DE, Wehner JM (1992) Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57Bl/6 and DBA/2 mice. Brain Res 619:111–119

    Article  Google Scholar 

  • Fredriksson A, Stigsdotter IM, Hurtig A, Ewalds-Kvist B, Archer T (2011) Running wheel activity restores MPTP-induced deficits. J Neural Transm 118:407–420

    Article  PubMed  CAS  Google Scholar 

  • Gavrilovic L, Spasojevic N, Dronjak S (2011) Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats. Eur J Appl Physiol. doi:10.1007/s00421-011-2046-5

  • Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103:693–699

    Article  PubMed  CAS  Google Scholar 

  • Goldshtrom Y, Knorr G, Goldshtrom I (2010) Rhythmic exercises in rehabilitation of TBI patients: a case report. J Bodyw Mov Ther 14:336–345

    Article  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Viňa J, Li LL (2009) Interplay of oxidants and antioxidants during exercise: implications for muscle health. Phys Sports Med 37:116–123

    Article  Google Scholar 

  • Gordon W, Sliwinski M, Echo J et al (1998) The benefits of exercise in individuals with traumatic brain injury: a retrospective study. J Head Trauma Rehabil 13:58–67

    Article  PubMed  CAS  Google Scholar 

  • Gosselin N, Bottari C, Chen JK, Petrides M, Tinawi S, de Guise E, Ptito A (2011) Electrophysiology and functional MRI in post-acute mild traumatic brain injury. J Neurotrauma 28:329–341

    Article  PubMed  Google Scholar 

  • Gould KR, Ponsford JL, Johnston L, Schönberger M (2011) The nature, frequency and course of psychiatric disorders in the first year after traumatic brain injury: a prospective study. Psychol Med 11:1–11

    Google Scholar 

  • Gratton G, Wee E, Rykhlevskaia EI, Leaver EE, Fabiani M (2009) Does white matter matter? Spatio-temporal dynamics of task switching in aging. J Cogn Neurosci 21:1380–1395

    Article  PubMed  Google Scholar 

  • Grealy M, Johnson D, Rushton S (1999) Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 80:661–667

    Article  PubMed  CAS  Google Scholar 

  • Greer T, Trivedi M (2009) Exercise in the treatment of depression. Curr Psychiatr Rep 11:466–472

    Article  Google Scholar 

  • Greve KW, Bianchini KJ, Mathias CW, Houston RJ, Crouch JA (2003) Detecting malingered performance on the Wechsler Adult Intelligence Scale. Validation of Mittenberg’s approach in traumatic brain injury. Arch Clin Neuropsychol 18:245–260

    PubMed  Google Scholar 

  • Griesbach GS (2011) Exercise after traumatic brain injury: is it a double-edged sword? PM&R 3(6):S64–S72

    Article  Google Scholar 

  • Griesbach GS, Gomez-Pinilla F, Hovda DA (2004a) The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res 1016:154–162

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F (2004b) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125:129–139

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Gómez-Pinilla F, Hovda DA (2007) Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J Neurotrauma 24:1161–1171

    Article  PubMed  Google Scholar 

  • Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    Article  PubMed  CAS  Google Scholar 

  • Griesbach GS, Hovda DA, Tio DL, Taylor AN (2011) Heightening of the stress response during the first weeks after a mild traumatic brain injury. Neuroscience 178:147–158

    Article  PubMed  CAS  Google Scholar 

  • Gunstad J, MacGregor K, Paul R, Poppas A, Jefferson A, Todaro J, Cohen R (2005) Cardiac rehabilitation improves cognitive performance in older adults with cardiovascular disease. J Cardiopulm Rehabil 25:173–175

    Article  PubMed  Google Scholar 

  • Hallett M (2005) Neuroplasticity and rehabilitation. J Rehabil Res Dev 42(4):xvii–xxii

    Article  PubMed  Google Scholar 

  • Hammond SI, Müller U, Carpendale JI, Bibok MB, Liebermann-Finestone DP (2011) The effects of parental scaffolding on preschoolers’ executive function. Dev Psychol. doi:10.1037/a0025519

  • Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454:463–469

    Article  PubMed  CAS  Google Scholar 

  • Hassett LM, Tate RL, Moseley AM, Gillett LE (2011) Injury severity, age and pre-injury exercise history predict adherence to a home-based exercise programme in adults with traumatic brain injury. Brain Inj 25:698–706

    Article  PubMed  Google Scholar 

  • Hawthorne G, Kaye AH, Gruen R, Houseman D, Bauer I (2011) Traumatic brain injury and quality of life: initial Australian validation of the QOLIBRI. J Clin Neurosci 18:197–202

    Article  PubMed  CAS  Google Scholar 

  • Hibbard M, Ashman T, Spielman L et al (2004) Relationship between depression and psychosocial functioning after traumatic brain injury. Arch Phys Med Rehabil 85(Suppl 2):S43–S53

    Article  PubMed  Google Scholar 

  • Hillman CH, Motl RW, Pontifex MB et al (2006) Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol 25:678–687

    Article  PubMed  Google Scholar 

  • Hoffman JM, Bell KR, Powell JM, Behr J, Dunn EC, Dikman S, Bombardier CH (2010) A randomized controlled trial of exercise to improve mood after traumatic brain injury. PM&R 2:911–919

    Article  Google Scholar 

  • Hoge C, McGurk D, Thomas J, Cox A, Engel C, Castro C (2008) Mild traumatic brain injury in US soldiers returning from Iraq. New Eng J Med 358:453–463

    Article  PubMed  CAS  Google Scholar 

  • Horenstein C, Lowe MJ, Koenig KA, Phillips MD (2009) Comparison of unilateral and bilateral complex finger tapping-related activation in premotor and primary motor cortex. Human Brain Mapp 30:1397–1412

    Article  Google Scholar 

  • Hudak A, Warner M, Marquez de la Plata C, Moore C, Harper C, Diaz-Arrastia R (2011) Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Res 191:160–165

    Article  PubMed  Google Scholar 

  • Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS ONE 4:e6729

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009) Improvement of cerebral function by anti-amyloid precursor protein antibody infusion after brain injury in rats. Mol Cell Biochem 324:191–199

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Imano M, Hashimoto S, Ito H (2010) Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury. Neurochem Res 35:348–355

    Article  PubMed  CAS  Google Scholar 

  • Janisse HC, Nedd D, Escamille S, Nies MA (2004) Physical activity, social support, and family structure as determinants of mood among European-American and African-American women. Women Health 39:101–116

    Article  PubMed  Google Scholar 

  • Jeukendrup AE, Vet-Joop K, Sturk A et al (2000) Relationship between gastro-intestinal complaints and endotoxemia, cytokine release and the acute-phase reaction during and after a long-distance triathalon in highly trained men. Clin Sci 98:47–55

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, Rönnkvist M, Fugl-Meyer AR (1991) Traumatic brain injury in northern Sweden. Incidence and prevalence of long-standing impairments and disabilities. Scand J Rehabil Med 23:179–185

    PubMed  CAS  Google Scholar 

  • Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S (2011) Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage. doi:10.1016/j.neuroimage.2011.07.081

  • Johnston JA (2006) The hypothalamic-pituitary-adrenal axis in critical illness. AACN Clin Issues 17:39–49

    Article  Google Scholar 

  • Jorge R, Robinson R, Moser D et al (2004) Major depression following traumatic brain injury. Arch Gen Psychiatry 61:42–50

    Article  PubMed  Google Scholar 

  • Kamijo K, Takeda Y (2010) Regular physical activity improves executive function during task switching in young adults. Int J Psychophysiol 75:304–311

    Article  PubMed  Google Scholar 

  • Kannangara TS, Lucero MJ, Gil-Mohapel J et al (2010) Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging 32:2279–2286

    Google Scholar 

  • Kaplan GB, Vasterling JJ, Vedak PC (2010) Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behav Pharmacol 21:427–437

    Article  PubMed  CAS  Google Scholar 

  • Karkoulias K, Habeos I, Charokopos N et al (2008) Hormonal responses to marathon running in non-elite athletes. Eur J Intern Med 19:598–601

    Article  PubMed  CAS  Google Scholar 

  • Kelly DF, McArthur DL, Levin H, Swimmer S, Dusick JR, Cohan P, Wang C, Swerdloff R (2006) Neurobehavioral and quality of life changes associated with growth hormone insufficiency after complicated mild, moderate, or severe traumatic brain injury. J Neurotrauma 23:928–942

    Article  PubMed  Google Scholar 

  • Kim YJ (2011) A systematic review of factors contributing to outcomes in patients with traumatic brain injury. J Clin Nurs 20:1518–1532

    Article  PubMed  Google Scholar 

  • Kizaki T, Maegawa T, Sakurai T et al (2011) Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages. Biochem Biophys Res Commun 413(3):454–459

    Article  PubMed  CAS  Google Scholar 

  • Kleim J, Jones T, Schallert T (2003) Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 28:1757–1769

    Article  PubMed  CAS  Google Scholar 

  • Knaepen K, Goekint M, Heymann EM, Meeusen R (2010) Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systemic review of experimental studies in human subjects. Sports Med 40:765–801

    Article  PubMed  Google Scholar 

  • Kobilo T, Liu QR, Gandhi K, Mughal M, Shaham Y, van Praag H (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18:605–609

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Hahn S, Cohen NJ et al (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419

    Article  PubMed  CAS  Google Scholar 

  • Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM et al (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519

    Article  PubMed  Google Scholar 

  • Kreutzer J, Seel R, Gourley E (2001) The prevalence of symptom rates of depression after traumatic brain injury: a comprehensive examination. Brain Inj 15:563–576

    Article  PubMed  CAS  Google Scholar 

  • Krogh J, Nordentoft M, Sterne JAC, Lawlor DA (2010) The effect of exercise in clinically-depressed adults: systematic review and meta-analysis of randomized controlled trials. J Clin Psychol. doi:10.4088/JCP.08r04913blu

  • Kruger K, Mooren FC (2007) T cell homing and exercise. Exerc Immunol Rev 13:37–54

    PubMed  CAS  Google Scholar 

  • Kruger K, Lechtermann A, Fobker M, Volker K, Mooren FC (2008) Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav Immun 22:324–338

    Article  PubMed  CAS  Google Scholar 

  • Lai S, Studenski S, Richards L et al (2006) Therapeutic exercise and depressive symptoms after stroke. J Am Geriatr Soc 54:240–247

    Article  PubMed  Google Scholar 

  • Lanctôt KL, Rapoport MJ, Chan F, Rajaram RD, Strauss J, Sicard T, McCullagh S, Feinstein A, Kiss A, Kennedy JL, Bassett AS, Herrmann N (2010) Genetic predictors of response to treatment with citalopram in depression secondary to traumatic brain injury. Brain Inj 24:959–969

    Article  PubMed  Google Scholar 

  • Lawlor DA, Hopker SW (2001) The effectiveness of exercise as an intervention in the management of depression: systematic review and meta-regression analysis of randomized control trials. BMJ 322:1–8

    Article  Google Scholar 

  • Lee EJ, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang GL (2005) Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J Pineal Res 38:42–52

    Article  PubMed  CAS  Google Scholar 

  • Lewin B, Robertson IH, Cay EL, Irving JB, Campbell M (1992) Effects of self-help post-myocardial-infarction rehabilitation on psychological adjustment and use of health services. Lancet 339:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Lin MR, Chiu WT, Chen YJ, Yu WY, Huang SJ, Tsai MD (2010) Longitudinal changes in the health-related quality of life during the first year after traumatic brain injury. Arch Phys Med Rehabil 91:474–480

    Article  PubMed  Google Scholar 

  • Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ, Pliskin N, Gorelick PB (2010) Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74:558–564

    Article  PubMed  CAS  Google Scholar 

  • Lombardi F (2008) Pharmacological treatment of neurobehaviouralsequelae of traumatic brain injury. Eur J Anaesthesiol Suppl 42:131–136

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Wang KH, Nose A (2009) Molecular mechanism underlying neural circuit formation. Curr Opin Neurobiol 19:162–167

    Article  PubMed  CAS  Google Scholar 

  • Luft AR, McCombe-Waller S, Whitall J et al (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292:1853–1861

    Article  PubMed  CAS  Google Scholar 

  • Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19:504–522

    Article  PubMed  Google Scholar 

  • Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L, de la Monte SM, Squinto S, Furth ME, Yancopoulos GD (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10:558–568

    Article  PubMed  CAS  Google Scholar 

  • Marklund N, Morales D, Clausen F, Hånell A, Kiwanuka O, Pitkänen A, Gimbel DA, Philipson O, Lannfelt L, Hillered L, Strittmatter SM, McIntosh TK (2009) Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice. Neuroscience 163:540–551

    Article  PubMed  CAS  Google Scholar 

  • Marks BL, Katz L, Smith JK et al (2009) Exercise and the aging mind: buffing the baby boomer’s body and brain. Phys Sports Med 37:119–125

    Article  Google Scholar 

  • Marks BL, Katz L, Styner M, Smith JK (2010) Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults.Br J Sports Med 45:1208–1215

    Google Scholar 

  • Martin EM, Lu WC, Helmick K, French L, Warden DL (2008) Traumatic brain injuries sustained in the Afghanistan and Iraq wars. Am J Nurs 108:40–47

    Article  PubMed  Google Scholar 

  • Martin-Cordero L, Garcia JJ, Hinchado MD, Ortega E (2011) The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism in metabolic syndrome: effect of exercise. Cardiovasc Diabetol 10. doi:10.1186/1475-2840-10-42

  • Mathur N, Pedersen BK (2011) Exercise as a means to control low-grade systemic inflammation. Mediators Inflamm. doi:10.1155/2008/109502

  • Max JE, Keatley E, Wilde EA, Bigler ED, Levin HS, Schachar RJ, Saunders A, Ewing-Cobbs L, Chapman SB, Dennis M, Yang TT (2011) Anxiety disorders in children and adolescents in the first six months after traumatic brain injury. J Neuropsychiatry Clin Neurosci 23:29–39

    Article  PubMed  Google Scholar 

  • McAllister TW, Flashman LA, McDonald BC, Saykin AJ (2006) Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma 23:1450–1467

    Article  PubMed  Google Scholar 

  • McArdle WD, Katch FI, Katch VI (1978) Appendix C. In: Lupash E (ed) Essentials of exercise physiology. Lippincott Williams and Wilkins, Baltimore, p 723

    Google Scholar 

  • McDonnell MN, Smith AE, Mackintosh SF (2011a) Aerobic exercise to improve cognitive function in adults with neurologic disorders: a systematic review. Arch Phys Med Rehabil 92:1044–1052

    Article  PubMed  Google Scholar 

  • McDonnell MN, Bryan J, Smith AE, Esterman AJ (2011b) Assessing cognitive impairment following stroke. J Clin Exp Neuropsychol 3:1–9

    Google Scholar 

  • McMillan T, Robertson ICH, Brock D, Chorlton L (2002) Brief mindfulness training for attentional problems after traumatic brain injury: a randomised control treatment trial. Neuropsychol Rehabil 12:117–125

    Article  Google Scholar 

  • McMorris T, Sproule J, Turner A, Hale BJ (2011) Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav 102:421–428

    Article  PubMed  CAS  Google Scholar 

  • Mead GE, Morley W, Campbell P (2008) Exercise for depression. Cochrane Database Syst Rev 4:CD004366

  • Medina JA, Netto TL, Muszkat M, Medina AC, Botter D, Orbetelli R, Scaramuzza LF, Sinnes EG, Vilela M, Miranda MC (2010) Exercise impact on sustained attention of ADHD children, methylphenidate effects. Atten Defic Hyperact Disord 2:49–58

    Article  PubMed  Google Scholar 

  • Menna E, Disanza A, Cagnoli C et al (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7:e1000138

    Article  PubMed  CAS  Google Scholar 

  • Molloy C, Conroy RM, Cotter DR, Cannon M (2011) Is traumatic brain injury a risk factor for schizophrenia? A meta-analysis of case-controlled population-based studies.Schizophr Bull 37:1104–1110

    Google Scholar 

  • Moppett IK (2007) Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 99:18–31

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Schoo A (2004) Optimizing exercise and physical activity in older adults. Butterworth Heinemann, Edinburgh

    Google Scholar 

  • Mota BC, Pereira L, Souza MA, Silva LF, Magni DV, Ferreira AP, Oliveira MS, Furian AF, Mazzardo-Martins L, Silva MD, Santos AR, Ferreira J, Fighera MR, Royes LF (2011) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res. doi:10.1007/s12640-011-9257-8

  • Mougios V (2010) Exercise metabolism. In: Bahrke MS (ed) Exercise biochemistry. Human Kinetics, Champaign, p 122

    Google Scholar 

  • Nation DA, Hong S, Jak AJ, Delano-Wood L, Mills PJ, Bondi MW, Dimsdale JE (2011) Stress, exercise, and Alzheimer’s disease: a neurovascular pathway. Med Hypoth 76:847–854

    Article  CAS  Google Scholar 

  • Negrao A, Deuster P, Gold P et al (2000) Individual reactivity and physiology of the stress response. Biomed Pharmacother 54:122–128

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC, Henson DA, Smith LL et al (2001) Cytokine changes after a marathon race. J Appl Physiol 91:109–114

    PubMed  CAS  Google Scholar 

  • Nieman DC, Dumke CL, Henson DA et al (2005) Muscle damage is linked to cytokine changes following a 160-km race. Brain Behav Immun 19:398–403

    Article  PubMed  CAS  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138

    Article  PubMed  CAS  Google Scholar 

  • Niogi SN, Mukherjee P, Ghajar J et al (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973

    Article  PubMed  CAS  Google Scholar 

  • Ogoh S, Brothers RM, Jeschke M, Secher NH, Raven PB (2010) Estimation of cerebral vascular tone during exercise: evaluation by critical closing pressure in humans. Exp Physiol 95:678–685

    Article  PubMed  Google Scholar 

  • Ogoh S, Fisher JP, Young CN, Fadel PJ (2011) Impact of age on critical closing pressure of the cerebral circulation during dynamic exercise in humans. Exp Physiol 96:417–425

    PubMed  Google Scholar 

  • Onyszchuk G, He YY, Berman NE, Brooks WM (2008) Detrimental effects of aging on outcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histological study in mice. J Neurotrauma 25:153–171

    Article  PubMed  Google Scholar 

  • Ormsbee MJ, Choi MD, Medlin JK, Geyer GH, Trantham LH, Dubis GS, Hickner RC (2009) Regulation of fat metabolism during resistance exercise in sedentary lean and obese men. J Appl Physiol 106:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Ortega E (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc Immunol Rev 9:70–94

    PubMed  Google Scholar 

  • Park DC, Reuter-Lorentz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196

    Article  PubMed  Google Scholar 

  • Pedersen BK (2006) The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease. Essays Biochem 42:105–117

    Article  PubMed  CAS  Google Scholar 

  • Peltz CB, Gratton G, Fabiani M (2011) Age-related changes in electrophysiological and neuropsychological indices of working memory, attention control, and cognitive flexibility. Front Psychol 2:190

    Article  PubMed  Google Scholar 

  • Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Petrik D, Lagace DC, Eisch AJ (2012) The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 62:21–34

    Article  PubMed  CAS  Google Scholar 

  • Pontifex M, Hillman C, Fernhall B, Thompson K, Valentini T (2009) The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc 41:927–934

    Article  PubMed  Google Scholar 

  • Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(Pt 9):2129–2138

    Article  PubMed  CAS  Google Scholar 

  • Powner DJ, Boccalandro C, Alp MS, Vollmer DG (2006) Endocrine failure after traumatic brain injury in adults. Neurocrit Care 5:61–70

    Article  PubMed  Google Scholar 

  • Qiu C, Xu W, Fratiglioni L (2010) Vascular and psychosocial factors in Alzheimer’s disease: epidemiological evidence toward intervention. J Alzheimers Dis 20:689–697

    PubMed  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Rapoport MJ, Chan F, Lanctot K, Herrmann N, McCullagh S, Feinstein A (2008) An open-label study of citalopram for major depression following traumatic brain injury. J Psychopharmacol 22:860–864

    Article  PubMed  CAS  Google Scholar 

  • Ratey JJ, Loehr JE (2011) The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci 22:171–185

    PubMed  Google Scholar 

  • Rethorst CD, Wipfli BM, Landers DM (2009) The antidepressive effects of exercise. A meta-analysis of randomized trials. Sports Med 39:491–511

    Article  PubMed  Google Scholar 

  • Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. ExpNeurol 183:406–417

    CAS  Google Scholar 

  • Richards L, Stweart K, Woodbury M, Senesac C, Cauraugh J (2008) Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia 46:3

    Article  PubMed  Google Scholar 

  • Rimel RW, Jane JA, Tyson GW (1981) Emergency management of head injuries. Resuscitation 9:75–97

    Article  PubMed  CAS  Google Scholar 

  • Rimel RW, Giordani B, Barth JT, Jane JA (1982) Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery 11:344–351

    Article  PubMed  CAS  Google Scholar 

  • Robertson CL (2004) Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J Bioenerg Biomembr 36:363–368

    Article  PubMed  CAS  Google Scholar 

  • Sallert M, Rantamäki T, Vesikansa A et al (2009) Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors. J Neurosci 29:11294–11303

    Article  PubMed  CAS  Google Scholar 

  • Samorajski T, Delaney C, Durham L (1985) Effect of exercise on longevity, body weight, locomotor performance, and passive avoidance of C57Bl/6 mice. Neurobiol Aging 6:17–24

    Article  PubMed  CAS  Google Scholar 

  • Satomura E, Baba H, Nakano Y, Maeshima H, Suzuki T, Arai H (2011) Correlations between brain-derived neurotrophic factor and clinical symptoms in medicated patients with major depression. J Affect Dis. doi:10.1016/j.jad.2011.06.041

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP, Maclin EL, Gratton G, Fabiani M (2010) Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22:655–669

    Article  PubMed  Google Scholar 

  • Schönberger M, Ponsford J, Reutens D, Beare R, Clarke D, O’Sullivan R (2011) The relationship between mood disorders and MRI findings following traumatic brain injury. Brain Inj 25:543–550

    Article  PubMed  Google Scholar 

  • Schwandt M, Harris JE, Thomas S, Keightley M, Snaiderman A, Colantonio A (2011) Feasibility and effect of aerobic exercise for lowering depressive symptoms among individuals with traumatic brain injury: a pilot study. J Head Trauma Rehabil. doi:10.1097/HTR.0b013e31820e6858

  • Seo HG, Kim DY, Park HW, Lee SU, Park SH (2010) Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J Korean Med Sci 25:1638–1645

    Article  PubMed  Google Scholar 

  • Serra-Grabulosa JM, Junqué C, Verger K, Salgado-Pineda P, Mañeru C, Mercader JM (2005) Cerebral correlates of declarative memory dysfunctions in early traumatic brain injury. J Neurol Neurosurg Psychiatry 76:129–131

    Article  PubMed  CAS  Google Scholar 

  • Sigurdardottir S, Jerstad T, Andelic N, Roe C, Schanke AK (2010) Olfactory dysfunction, gambling task performance and intracranial lesions after traumatic brain injury. Neuropsychology 24:504–513

    Article  PubMed  Google Scholar 

  • Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W (2010) Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res 202:341–354

    Article  PubMed  Google Scholar 

  • Smetanka RD, Lambert GB, Murray R (1999) Intestinal permeability in runners in the 1996 Chicago marathon. Int J Sport Nutr 9:426–433

    PubMed  CAS  Google Scholar 

  • Smith PJ, Blumenthal JA, Babyak MA, Georgiades A, Hinderliter A, Sherwood A (2007) Effects of exercise and weight loss on depressive symptoms among men and women with hypertension. J Psychosom Res 63:463–469

    Article  PubMed  Google Scholar 

  • Stewart K, Cauraugh J, Summers J (2006) Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. J Neurolog Sci 244:89

    Article  Google Scholar 

  • Ströhle A (2009) Physical activity, exercise, depression, and anxiety disorders. J Neural Transm 116:777–784

    Article  PubMed  Google Scholar 

  • Stummer W, Weber K, Tranmer B (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25:1862–1869

    Article  PubMed  CAS  Google Scholar 

  • Takada M, Suzuki A, Shima S, Inoue K, Kazukawa S, Hojoh M (2009) Associations between lifestyle factors, working environment, depressive symptoms and suicidal ideation: a large-scale study in Japan. Ind Health 47:649–655

    Article  PubMed  Google Scholar 

  • Tanriverdi F, Senyurek H, Unluhizarci K et al (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91:2105–2111

    Article  PubMed  CAS  Google Scholar 

  • Tanriverdi F, Ulutabanca H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2007) Pituitary functions in the acute phase of traumatic brain injury: are they related to severity of the injury or mortality? Brain Inj 21:433–439

    Article  PubMed  Google Scholar 

  • Tanriverdi F, De Bellis A, Bizzarro A, Sinisi AA, Bellastella G, Pane E, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2008a) Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol 159:7–13

    Article  PubMed  CAS  Google Scholar 

  • Tanriverdi F, Ulutabanca H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F (2008b) Three years prospective investigation of anterior pituitary function after traumatic brain injury: a pilot study. Clin Endocrinol 68:573–579

    Article  CAS  Google Scholar 

  • Tanriverdi F, Unluhizarci K, Karaca Z, Casanueva FF, Kelestimur F (2010a) Hypopituitarism due to sports related head trauma and the effects of growth hormone replacement in retired amateur boxers. Pituitary 13:111–114

    Article  PubMed  CAS  Google Scholar 

  • Tanriverdi F, Unluhizarci K, Kelestrimur F (2010b) Persistent neuroinflammation may be involved in the pathogenesis of traumatic brain injury (TBI)-induced hypopituitarism: potential genetic and autoimmune factors. J Neurotrauma 27:301–302

    Article  PubMed  Google Scholar 

  • TanriverdiF Unluhizarci K, Kelestrimur F (2010) Pituitary function in patients with mild traumatic brain injury: a review of literature and proposal of a screening strategy. Pituitary 13:146–153

    Article  Google Scholar 

  • Taylor RS, Brown A, Ebrahim S et al (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116:682–692

    Article  PubMed  Google Scholar 

  • Taylor AN, Rahman SU, Sanders NC (2008) Injury severity differentially affects short- and long-term neuroendocrine outcomes of traumatic brain injury. J Neurotrauma 25:311–323

    Article  PubMed  Google Scholar 

  • Taylor AN, Rahman SU, Tio DL (2010) Injury severity differentially alters sensitivity to dexamethasone after traumatic brain injury. J Neurotrauma 27:1081–1089

    Article  PubMed  Google Scholar 

  • Thaut MH, Leins AK, Rice RR et al (2007) Rhythmic auditory stimulation improves gait more than ndt/bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil Neural Repair 21:455–459

    Article  PubMed  CAS  Google Scholar 

  • Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I (2011) Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. doi:10.1155/2011/765923

  • Tsang HW, Chan EP, Cheung WM (2008) Effects of mindful and non-mindful exercises on people with depression: a systematic review. Br J Clin Psychol 47:303–322

    Article  PubMed  Google Scholar 

  • Tseng CN, Gau BS, Lou MF (2011) The effectiveness of exercise on improving cognitive function in older people: a systematic review. J Nurs Res 19:119–131

    Article  PubMed  Google Scholar 

  • Van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  Google Scholar 

  • Viňa J, Gomez-Cabrera MC, Borras C, Froio T, Sanchis-Gomar F, Martinez-Bello VE, Pallardo FV (2009) Mitochondrial biogenesis in exercise and in aging. Adv Drug Deliv Rev 61:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Voss MW, Prakash RS, Erickson KI et al (2010) Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2:32. doi:10.3389/fnagi.2010.00032

    PubMed  Google Scholar 

  • Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF (2011) Exercise, brain, and cognition across the lifespan. J Appl Physiol 111:1505–1513

    Google Scholar 

  • Voss MW, Chaddock L, Kim JS, Vanpatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF (2012) Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. doi:10.1016/j.neuroscience.2011.10.009

  • Walsh NP, Gleeson M, Shepard RJ et al (2011) Position statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  • Wang C, Bannuru R, Ramel J, Kupelnick B, Scott T, Schmid CH (2010) Tai chi and psychological well-being: systematic review and meta-analysis. BMC Compl Altern Med 10:23–39

    Article  Google Scholar 

  • Warden D (2006) Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 21:398–402

    Article  PubMed  Google Scholar 

  • Weltman A, Wideman L, Weltman JY, Veldhuis JD (2003) Neuroendocrine control of GH release during acute aerobic exercise. J Endocrinol Invest 26:843–850

    PubMed  CAS  Google Scholar 

  • Wilde EA, Newsome MR, Bigler ED, Pertab J, Merkley TL, Hanten G, Scheibel RS, Li X, Chu Z, Yallampalli R, Hunter JV, Levin HS (2011) Brain imaging correlates of verbal working memory in children following traumatic brain injury. Int J Psychophysiol 82:86–96

    Google Scholar 

  • Wilson KR, Donders J, Nguyen L (2011) Self and parent ratings of executive functioning after adolescent traumatic brain injury. Rehabil Psychol 56:100–106

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2011) The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J Neurotrauma 28:2113–2122

    Google Scholar 

  • Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Xuan AG, Long DH, Gu HG, Yang DD, Hong LP, Leng SL (2008) BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix. Neurosci Lett 440:331–335

    Article  PubMed  CAS  Google Scholar 

  • Yacobian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  Google Scholar 

  • Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106:1814–1820

    Article  PubMed  Google Scholar 

  • Zhang F, Wu Y, Jia J (2011) Exercise preconditioning and brain ischemic tolerance. Neuroscience 177:170–176

    Article  PubMed  CAS  Google Scholar 

  • Zhou XP, Wu KY, Liang B, Fu XQ, Luo ZG (2008) TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci USA 28:17181–17186

    Article  Google Scholar 

  • Zohar O, Rubovitch V, Milman A et al (2011) Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp 71:36–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, T. Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect. Neurotox Res 21, 418–434 (2012). https://doi.org/10.1007/s12640-011-9297-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9297-0

Keywords

Navigation