Skip to main content
Log in

Physical Exercise Attenuates MPTP-Induced Deficits in Mice

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Two experiments were performed to investigate the effects of physical exercise upon the hypokinesia induced by two different types of MPTP administration to C57/BL6 mice. In the first, mice were administered either the standard MPTP dose (2 × 20 or 2 × 40 mg/kg, 24-h interval) or vehicle (saline, 5 ml/kg); and over the following 3 weeks were given daily 30-min period of wheel running exercise over five consecutive days/week or placed in a cage in close proximity to the running wheels. Spontaneous motor activity testing in motor activity test chambers indicated that exercise attenuated the hypokinesic effects of both doses of MPTP upon spontaneous activity or subthreshold l-Dopa-induced activity. In the second experiment, mice were either given wheel running activity on four consecutive days (30-min period) or placed in a cage nearby and on the fifth day, following motor activity testing over 60 min, injected with either MPTP (1 × 40 mg/kg) or vehicle. An identical procedure was maintained over the following 4 weeks with the exception that neither MPTP nor vehicle was injected after the fifth week. The animals were left alone (without either exercise or MPTP) and tested after 2- and 4-week intervals. Weekly exercise blocked, almost completely, the progressive development of severe hypokinesia in the MPTP mice and partially restored normal levels of activity after administration of subthreshold l-Dopa, despite the total absence of exercise following the fifth week. In both experiments, MPTP-induced loss of dopamine was attenuated by the respective regime of physical exercise with dopamine integrity more effectively preserved in the first experiment. The present findings are discussed in the context of physical exercise influences upon general plasticity and neuroreparative propensities as well as those specific for the nigrostriatal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad AO, Park J-H, Stenho-Bittel L, Lau YS (2009) Effects of endurance exercise on ventral tegmental area neurons in the chronic 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine and probenecid-treated mice. Neurosci Lett 450:102–105

    Article  CAS  PubMed  Google Scholar 

  • Aksu I, Topcu A, Camsari UM, Acikgoz O (2009) Effect of acute and chronic exercise on oxidant-antioxidant equilibrium in rat hippocampus, prefrontal cortex and striatum. Neurosci Lett 452:281–285

    Article  CAS  PubMed  Google Scholar 

  • Al-Jarrah M, Pothakos K, Novikova L, Smirnova IV, Kurz MJ, Stenho-Bittel L, Lau YS (2007) Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of Parkinsonism with severe neurodegeneration. Neuroscience 149:28–37

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2003) An antihypokinesic action of α2-adrenoceptors upon MPTP-induced behavior deficits in mice. J Neural Transm 110:183–200

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2006) Influence of noradrenaline denervation upon MPTP-induced deficts in mice. J Neural Transm 113:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2007) Functional consequences of iron overload in catecholaminergic interactions: the Youdim factor. Neurochem Res 32:1625–1639

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A, Jonsson G, Lewander T, Mohammed AK, Ross SB, Söderberg U (1986) Central noradrenaline depletion antagonizes aspects of d-amphetamineinduced hyperactivity in the rat. Psychopharmacology 88:141–146

    Article  CAS  PubMed  Google Scholar 

  • Balthazar CH, Leite LH, Rodrigues AG, Coimbra CC (2009) Performance-enhancing and thermoregulatory effects of intracerebroventricular dopamine in running rats. Pharmacol Biochem Behav 93:465–469

    Article  CAS  PubMed  Google Scholar 

  • Belke W (1996) Investigating the reinforcing properties of running. In: Epling WF, Pierce WD (eds) Activity anorexia: theory, research, and treatment. Erlbaum, Mahwah, pp 45–55

    Google Scholar 

  • Bilowit DS (1956) Establishing physical objectives in rehabilitation of patients with Parkinson’s disease. Phys Ther Rev 36:176–178

    CAS  PubMed  Google Scholar 

  • Björk L, Lindgren S, Hacksell U, Lewander T (1991) (S)-UH-301 antagonizes (R)-8-OH-DPAT-induced cardiovascular effects in the rat. Eur J Pharmacol 199:367–370

    Article  PubMed  Google Scholar 

  • Cambras T, Vilaplana J, Campuzano A, Canal-Corretger MM, Carulla M, Diez-Noguera A (2000) Entrainment of the rat motor activity rhythm: effects of light-dark cycle and physical exercise. Physiol Behav 70:227–232

    Article  CAS  PubMed  Google Scholar 

  • Challet E, Malan A, Pévet P (1996) Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept at constant darkness. Neurosci Lett 211:1–4

    Article  CAS  PubMed  Google Scholar 

  • Ciucci MR, Ma ST, Kane JR, Ahrens AM, Schallert T (2008) Limb use and complex ultrasonic vocalization in a rat model of Parkinson’s disease: deficit-targeted training. Parkinsonism Relat Disord 14(Suppl. 2):S172–S175

    Article  PubMed  Google Scholar 

  • Cohen AD, Tillerson JL, Smith AD, Schallert T, Zigmond MJ (2003) Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 85:299–305

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC (2002) Exercise: a behavioural intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  CAS  PubMed  Google Scholar 

  • de Visser L, van der Bos R, Spruijt BM (2005) Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 160:382–388

    Article  PubMed  Google Scholar 

  • de Visser L, van der Bos R, Stoker AK, Kas MJH, Spruijt BM (2007) Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice. Behav Brain Res 177:290–297

    Article  PubMed  Google Scholar 

  • Decamp E, Schneider JS (2004) Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur J Neurosci 20:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Döbrössy MD, Dunnett SB (2001) The influence of environment and experience on neural grafts. Nat Rev Neurosci 2:871–879

    Article  PubMed  Google Scholar 

  • Döbrössy MD, Dunnett SB (2003) Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 184:274–284

    Article  PubMed  Google Scholar 

  • Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO (2005) Exercise treatment for depression: efficacy and dose response. Am J Prev Med 28:1–8

    Article  PubMed  Google Scholar 

  • Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77:378–390

    Article  CAS  PubMed  Google Scholar 

  • Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromol Med 10:67–80

    Article  CAS  Google Scholar 

  • Fox CM, Ramig LO, Ciucci MR, Sapir S, McFarland DH, Farley BG (2006) The science and practice of LSVT/LOUD: neural plasticity approach to treating individuals with Parkinson’s disease and other neurological disorders. Semin Speech Lang 27:283–299

    Article  PubMed  Google Scholar 

  • Fredriksson A, Archer T (1994) MPTP-induced behavioural and biochemical deficits: a parametric analysis. J Neural Transm Dis Dement Sect 7:123–132

    Article  CAS  Google Scholar 

  • Fredriksson A, Archer T (2003) Effect of postnatal iron administration on MPTP-induced behavioural deficits and neurotoxicity: behavioural enhancement by L-Dopa-MK-801 co-administration. Behav Brain Res 139:31–46

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Archer T (2007) Postnatal iron overload destroys NA-DA functional interactions. J Neural Transm 114:195–203

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Gentsch C, Archer T (1994) Synergistic interactions between NMDA-antagonists and L-Dopa on activity in MPTP-treated mice. J Neural Transm [Gen Sect] 97:197–209

    Article  CAS  Google Scholar 

  • Fredriksson A, Plaznik A, Sundström E, Jonsson G, Archer T (1990) MPTP-induced hypoactivity in mice: reversal by L-Dopa. Pharmacol Toxicol 67:295–301

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Palomo T, Chase TN, Archer T (1999) Tolerance to a suprathreshold dose of L-Dopa in MPTP mice: effects of glutamate antagonists. J Neural Transm 106:283–300

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2001) Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Relat Dis 7:97–105

    Article  Google Scholar 

  • German DC, Nelson EL, Liang CL, Speciale SG, Sinton CM, Sonsalla PK (1996) The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration 5:299–312

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195

    Article  CAS  PubMed  Google Scholar 

  • Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Dis 23:631–640

    Article  Google Scholar 

  • Harri M, Lindblom J, Malinen H, Hyttinen M, Lapvetelainen T, Escola S, Helminen HJ (1999) Effect of access to a running wheel on behaviour of C57Bl/6 J mice. Lab Anim Sci 49:401–405

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Sieber B-A, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrohydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz A (1989) The benefit of a home exercise regime for ambulatory Parkinson’s disease patients. J Neurosci Nurs 21:180–184

    CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death cauesed by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Neurodegeneration 4:257–269

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933

    Article  PubMed  Google Scholar 

  • Kirk R (1995) Experimental design: procedures for the behavioral sciences. Brooks/Cole, Belmont

    Google Scholar 

  • Kurz MJ, Pothakos K, Jamaluddon S, Scott-Pandorf M, Arellano C, Lau Y-S (2007) A chronic mouse model of Parkinson’s disease has a reduced gait pattern certainty. Neurosci Lett 429:39–42

    CAS  PubMed  Google Scholar 

  • Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36:201–206

    Article  CAS  PubMed  Google Scholar 

  • Lau YS (2005) Progressive neurodegeneration in the chronic MPTP/probenecid model of Parkinson’s disease. In: Ebadi M, Pfeiffer R (eds) Parkinson’s disease. CRC Press, Boca Raton, pp 109–115

    Google Scholar 

  • Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58:498–504

    Article  CAS  PubMed  Google Scholar 

  • Lett BT, Grant VL, Byrne MJ, Koh MT (2000) Pairings of a distinctive chamber with the after effect of wheel running produce conditioned place preference. Appetite 34:87–94

    Article  CAS  PubMed  Google Scholar 

  • Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yu H, Mohell N, Nordvall G, Lewander T, Hacksell U (1995) Derivatives of cis-2-amino-8-hydroxy-1-methyltetralin: mixed 5-HT1A-receptor agonists and dopamine D2-receptor antagonists. J Med Chem 38:150–160

    Article  CAS  PubMed  Google Scholar 

  • Meek TH, Lonquich BP, Hannon RM, Garland T (2009) Endurance capacity of mice selectively bred for high voluntary wheel running. J Exp Biol 212:2908–2917

    Article  PubMed  Google Scholar 

  • Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, Kang J (2000) Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil 81:849–852

    Article  CAS  PubMed  Google Scholar 

  • Morris M, Schoo A (2004) Optimizing exercise and physical activity in older adults. Butterworth Heinemann, Edinburgh

    Google Scholar 

  • Muhlack S, Welnic J, Woitalla D, Müller T (2007) Exercise improves efficacy of levodopa in patients with Parkinson’s disease. Mov Dis 22:427–430

    Article  Google Scholar 

  • Novikova L, Garris BL, Garris DR, Lau YS (2006) Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1.methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience 140:67–76

    Article  CAS  PubMed  Google Scholar 

  • O’Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF (2007) Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 144:1141–1151

    Article  PubMed  Google Scholar 

  • Palmer SS, Mortimer JA, Webster DD, Bistevins R, Dickinson GL (1986) Exercise therapy for Parkinson’s disease. Arch Phys Med Rehab 67:741–745

    Article  CAS  Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  CAS  PubMed  Google Scholar 

  • Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27:52291–52300

    Article  Google Scholar 

  • Pohl M, Rockstroh G, Ruckreim S, Mrass G, Mehrholz J (2003) Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil 84:1760–1766

    Article  PubMed  Google Scholar 

  • Pothakos K, Kurz MJ, Lau YS (2009) Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci 10:1–14

    Article  Google Scholar 

  • Ridgel AL, Vitek JL, Alberts JL (2009) Forced, not voluntary, exercise improves motor function in Parkinson’s disease patients. Neurorehabil Neural Repair 23:600–608

    Article  PubMed  Google Scholar 

  • Sabatini U, Boulanouar K, Fabre N et al (2000) Cortical motor reorganisation in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403

    Article  PubMed  Google Scholar 

  • Sherwin CM (1998a) The use and perceived importance of three resources which provide caged laboratory mice the opportunity for extended locomotion. Appl Anim Behav Sci 55:353–367

    Article  Google Scholar 

  • Sherwin CM (1998b) Voluntary wheel running: a review and novel interpretation. Anim Behav 56:11–27

    Article  PubMed  Google Scholar 

  • Smith AD, Zigmond MJ (2003) Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol 184:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    Article  CAS  PubMed  Google Scholar 

  • Sundström E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioural changes in MPTP-lesioned C57 BL/6 mice: a model for Parkinson’s disease. Brain Res 528:181–188

    Article  PubMed  Google Scholar 

  • Swallow JG, Carter PA, Garland T (1998a) Artificial selection for increased wheel-running behavior in house mice. Behav Genet 28:227–237

    Article  CAS  PubMed  Google Scholar 

  • Swallow JG, Carter PA, Zhan WZ, Sieck GC (1998b) Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol 84:69–76

    CAS  PubMed  Google Scholar 

  • Teixeira AM, Trevizol F, Colpo G, Garcia SC, Charão M, Pereira RP, Fachinetto R, Rocha JB, Bürger ME (2008) Influence of chronic exercise on reserpine-induced oxidative stress in rats: behavioral and antioxidant evaluations. Pharmacol Biochem Behav 88:465–472

    Article  CAS  PubMed  Google Scholar 

  • Tetrud JW, Langston JW, Redmond DE, Roth RH, Sladek JR, Angel RW (1986) MPTP-induced tremor in human and non-human primates. Neurology 36(Suppl. 1):308

    Google Scholar 

  • Tillerson JL, Cohen AD, Philpower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435

    CAS  PubMed  Google Scholar 

  • Tillerson JL, Caudle WM, Reveron ME, Miller GW (2002) Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Exp Neurol 178:80–90

    Article  CAS  PubMed  Google Scholar 

  • Tillerson JL, Caudle WM, Reveron ME, Miller GW (2003) Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience 119:899–911

    Article  CAS  PubMed  Google Scholar 

  • Toole T, Maitland CG, Warren E, Hubmann MF, Panton L (2005) The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation 20:307–322

    PubMed  Google Scholar 

  • Turner MJ, Kleeberger SR, Lightfoot JT (2005) Influence of genetic background on daily running-wheel activity differs with aging. Physiol Genomics 22:76–85

    Article  PubMed  Google Scholar 

  • Van Eijkeren FJM, Reijmers RSJ, Kleinveld MJ, Minten A, ter Bruggen JP, Bloem BR (2008) Nordic walking improves mobility in Parkinson’s disease. Mov Dis 23:2239–2243

    Article  Google Scholar 

  • Van Gelder BM, Tijhuis MA, Kalmijn S, Giampeoli S, Nissinen A, Kromhout D (2004) Physical activity in relation to cognitive decline in elderly men: the FINE study. Neurology 63:2316–2321

    PubMed  Google Scholar 

  • Vargas-Perez H, Borelli E, Diaz J-L (2004) Wheel running use in dopamine D2L receptor knockout mice. Neurosci Lett 366:172–175

    Article  CAS  PubMed  Google Scholar 

  • Vucković MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, Smith A, Petzinger GM, Jakowec MW (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32:319–327

    Article  PubMed  Google Scholar 

  • Werme M, Thoren P, Olson L, Brene S (2000) Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen. Eur J Neurosci 12:2967–2974

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    Article  CAS  PubMed  Google Scholar 

  • Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, Kim CJ (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett 423:12–17

    Article  CAS  PubMed  Google Scholar 

  • Yousefi B, Tadibi V, Khoei AF and Montazeri A (2009) Exercise therapy, quality of life, and activities of daily living in patients with Parkinson disease: a small scale quasi-randomised trial. Trials 10:67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, T., Fredriksson, A. Physical Exercise Attenuates MPTP-Induced Deficits in Mice. Neurotox Res 18, 313–327 (2010). https://doi.org/10.1007/s12640-010-9168-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9168-0

Keywords

Navigation