Skip to main content
Log in

Physical Exercise as a Modulator of Vascular Pathology and Thrombin Generation to Improve Outcomes After Traumatic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 21 January 2022

This article has been updated

Abstract

Disruption of the blood–brain barrier and occurrence of coagulopathy after traumatic brain injury (TBI) have important implications for multiple secondary injury processes. Given the extent of post-traumatic changes in neuronal function, significant alterations in some targets, such thrombin (a protease that plays a physiological role in maintaining blood coagulation), play an important role in TBI-induced pathophysiology. Despite the magnitude of thrombin in synaptic plasticity being concentration-dependent, the mechanisms underlying TBI have not been fully elucidated. The understanding of this post-injury neurovascular dysregulation is essential to establish scientific-based rehabilitative strategies. One of these strategies may be supporting physical exercise, considering its relevance in reducing damage after a TBI. However, there are caveats to consider when interpreting the effect of physical exercise on neurovascular dysregulation after TBI. To complete this picture, this review will describe how the interactions established between blood-borne factors (such as thrombin) and physical exercise alter the TBI pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data and material pertaining to this manuscript shall be made available as per the journal’s guidelines.

Code Availability

Not applicable.

Change history

References

  1. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg:1–18

  2. Royes LFF, Gomez-Pinilla F (2019) Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 102:345–361

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lindblad C, Thelin EP, Nekludov M, Frostell A, Nelson DW, Svensson M et al (2018) Assessment of platelet function in traumatic brain injury-a retrospective observational study in the neuro-critical care setting. Front Neurol 9:15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esnault P, Roubin J, Cardinale M, D’Aranda E, Montcriol A, Cungi PJ et al (2019) Spontaneous hyperventilation in severe traumatic brain injury: incidence and association with poor neurological outcome. Neurocrit Care 30:405–413

    Article  CAS  PubMed  Google Scholar 

  5. Albert-Weissenberger C, Hopp S, Nieswandt B, Siren AL, Kleinschnitz C, Stetter C (2019) How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 326:9–13

    Article  CAS  PubMed  Google Scholar 

  6. Mhatre M, Nguyen A, Kashani S, Pham T, Adesina A, Grammas P (2004) Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 25:783–793

    Article  CAS  PubMed  Google Scholar 

  7. Fletcher-Sandersjöö A, Thelin EP, Maegele M, Svensson M, Bellander B-M (2021) Time course of hemostatic disruptions after traumatic brain injury: a systematic review of the literature. Neurocrit Care 34:635–656

    Article  PubMed  Google Scholar 

  8. Shannon O (2021) The role of platelets in sepsis. Res Pract Thromb Haemost 5:27–37

    Article  PubMed  Google Scholar 

  9. Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D (1991) Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6:575–581

    Article  CAS  PubMed  Google Scholar 

  10. Luo W, Wang Y, Reiser G (2007) Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev 56:331–345

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Reiser G (2003) Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem 384:193–202

    Article  CAS  PubMed  Google Scholar 

  12. Donovan FM, Cunningham DD (1998) Signaling pathways involved in thrombin-induced cell protection. J Biol Chem 273:12746–12752

    Article  CAS  PubMed  Google Scholar 

  13. Xi G, Reiser G, Keep RF (2003) The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 84:3–9

    Article  CAS  PubMed  Google Scholar 

  14. Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD (1995) Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci 15:5389–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G (2000) The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A 97:2264–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajput PS, Lamb JA, Fernández J, Bai J, Pereira BR, Lei IF et al (2019) Neuroprotection and vasculoprotection using genetically targeted protease-ligands. Brain Res 1715:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piao CS, Holloway AL, Hong-Routson S, Wainwright MS (2019) Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin. 39:58–73

  18. Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B (2016) The importance of thrombin in cerebral injury and disease. Int J Mol Sci, 17

  19. Yang Y, Zhang M, Kang X, Jiang C, Zhang H, Wang P et al (2015) Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice. Behav Brain Funct 11:30

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C et al (2017) ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485:499–505

    Article  CAS  PubMed  Google Scholar 

  21. Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG (2021) Role of thrombin in central nervous system injury and disease. 11

  22. Ben Shimon M, Shavit-Stein E, Altman K, Pick CG, Maggio N (2019) Thrombin as key mediator of seizure development following traumatic brain injury. Front Pharmacol 10:1532

    Article  PubMed  Google Scholar 

  23. Itsekson-Hayosh Z, Shavit-Stein E, Last D, Goez D, Daniels D, Bushi D et al (2015) Thrombin activity and thrombin receptor in rat glioblastoma model: possible markers and targets for intervention? J Mol Neurosci 56:644–651

    Article  CAS  PubMed  Google Scholar 

  24. Möller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75:1539–1547

    Article  PubMed  Google Scholar 

  25. Ryu J, Pyo H, Jou I, Joe E (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J Biol Chem 275:29955–29959

    Article  CAS  PubMed  Google Scholar 

  26. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2:492–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maggio N, Vlachos A (2014) Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 281:135–146

    Article  CAS  PubMed  Google Scholar 

  28. Krishna G, Agrawal R, Zhuang Y, Ying Z, Paydar A, Harris NG et al (2017) 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: implications for early brain trauma recovery. Biochim Biophys Acta Mol Basis Dis 1863:1204–1213

    Article  CAS  PubMed  Google Scholar 

  29. Zadow EK, Wundersitz DWT, Hughes DL, Adams MJ, Kingsley MIC, Blacklock HA et al (2020) Coronavirus (COVID-19), coagulation, and exercise: interactions that may influence health outcomes. Semin Thromb Hemost 46:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panagiotakos DB, Pitsavos C, Chrysohoou C, Kavouras S, Stefanadis C (2005) The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Prev Med 40:432–437

    Article  PubMed  Google Scholar 

  31. Pitsavos C, Panagiotakos DB, Chrysohoou C, Kavouras S, Stefanadis C (2005) The associations between physical activity, inflammation, and coagulation markers, in people with metabolic syndrome: the ATTICA study. Eur J Cardiovasc Prev Rehabil 12:151–158

    Article  PubMed  Google Scholar 

  32. Thrall G, Lane D, Carroll D, Lip GY (2007) A systematic review of the effects of acute psychological stress and physical activity on haemorheology, coagulation, fibrinolysis and platelet reactivity: Implications for the pathogenesis of acute coronary syndromes. Thromb Res 120:819–847

    Article  CAS  PubMed  Google Scholar 

  33. Ang ET, Gomez-Pinilla F (2007) Potential therapeutic effects of exercise to the brain. Curr Med Chem 14:2564–2571

    Article  CAS  PubMed  Google Scholar 

  34. Motta L, Dutton E (2013) Suspected exercise-induced seizures in a young dog. J Small Anim Pract 54:213–218

    Article  CAS  PubMed  Google Scholar 

  35. Tripodi A (2016) Thrombin generation assay and its application in the clinical laboratory. Clin Chem 62:699–707

    Article  CAS  PubMed  Google Scholar 

  36. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Y, Wu J, Hua Y, Keep RF, Xiang J, Hoff JT et al (2002) Thrombin-receptor activation and thrombin-induced brain tolerance. J Cereb Blood Flow Metab 22:404–410

    Article  CAS  PubMed  Google Scholar 

  38. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT (1999) Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke 30:1247–1255

    Article  CAS  PubMed  Google Scholar 

  40. Xi G, Keep RF, Hua Y, Hoff JT (2000) Thrombin preconditioning, heat shock proteins and thrombin-induced brain edema. Acta Neurochir Suppl 76:511–515

    CAS  PubMed  Google Scholar 

  41. Masada T, Xi G, Hua Y, Keep RF (2000) The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Res 867:173–179

    Article  CAS  PubMed  Google Scholar 

  42. Hua Y, Xi G, Keep RF, Wu J, Jiang Y, Hoff JT (2002) Plasminogen activator inhibitor-1 induction after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 22:55–61

    Article  CAS  PubMed  Google Scholar 

  43. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  CAS  Google Scholar 

  44. Badaut J, Fukuda AM, Jullienne A, Petry KG (2014) Aquaporin and brain diseases. Biochim Biophys Acta 1840:1554–1565

    Article  CAS  PubMed  Google Scholar 

  45. Nag S, Manias JL, Stewart DJ (2009) Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol 35:417–426

    Article  CAS  PubMed  Google Scholar 

  46. Jha RM, Kochanek PM, Simard JM (2019) Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145:230–246

    Article  CAS  PubMed  Google Scholar 

  47. Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13:264

    Article  PubMed  PubMed Central  Google Scholar 

  48. Itsekson-Hayosh Z, Shavit-Stein E, Katzav A, Rubovitch V, Maggio N, Chapman J et al (2016) Minimal traumatic brain injury in mice: protease-activated receptor 1 and thrombin-related changes. J Neurotrauma 33:1848–1854

    Article  PubMed  Google Scholar 

  49. Jeffers A, Owens S, Koenig K, Quaid B, Pendurthi UR, Rao VM et al (2015) Thrombin down-regulates tissue factor pathway inhibitor expression in a PI3K/nuclear factor-κB-dependent manner in human pleural mesothelial cells. Am J Respir Cell Mol Biol 52:674–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maggio N, Itsekson Z, Dominissini D, Blatt I, Amariglio N, Rechavi G et al (2013) Thrombin regulation of synaptic plasticity: implications for physiology and pathology. Exp Neurol 247:595–604

    Article  CAS  PubMed  Google Scholar 

  51. Smith-Swintosky VL, Zimmer S, Fenton JW 2nd, Mattson MP (1995) Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J Neurosci 15:5840–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  CAS  PubMed  Google Scholar 

  53. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  54. Piao C, Ralay Ranaivo H, Rusie A, Wadhwani N, Koh S, Wainwright MS (2015) Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the Rho kinase pathway. Exp Neurol 273:288–300

    Article  CAS  PubMed  Google Scholar 

  55. Ramos-Mandujano G, Vázquez-Juárez E, Hernández-Benítez R, Pasantes-Morales H (2007) Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55:917–925

    Article  PubMed  Google Scholar 

  56. Vázquez-Juárez E, Hernández-Benítez R, López-Domínguez A, Pasantes-Morales H (2009) Thrombin potentiates D-aspartate efflux from cultured astrocytes under conditions of K+ homeostasis disruption. J Neurochem 111:1398–1408

    Article  PubMed  Google Scholar 

  57. Krämer TJ, Sakas W, Jussen D, Krenzlin H, Kempski O, Alessandri B (2018) Thrombin contributes to the injury development and neurological deficit after acute subdural hemorrhage in rats only in collaboration with additional blood-derived factors. BMC Neurosci 19:81

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu DZ, Waldau B, Ander BP, Zhan X, Stamova B, Jickling GC et al (2017) Inhibition of Src family kinases improves cognitive function after intraventricular hemorrhage or intraventricular thrombin. J Cereb Blood Flow Metab 37:2359–2367

    Article  CAS  PubMed  Google Scholar 

  59. Prima V, Serebruany VL, Svetlov A, Hayes RL, Svetlov SI (2013) Impact of moderate blast exposures on thrombin biomarkers assessed by calibrated automated thrombography in rats. J Neurotrauma 30:1881–1887

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pérez-Domínguez M, Hernández-Benítez R, Peña Segura C, Pasantes-Morales H (2014) Thrombin-facilitated efflux of D-[3H]-aspartate from cultured astrocytes and neurons under hyponatremia and chemical ischemia. Neurochem Res 39:1219–1231

    Article  PubMed  Google Scholar 

  61. Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86

    CAS  PubMed  Google Scholar 

  62. Wang L, Wang L, Dai Z, Wu P, Shi H, Zhao S (2017) Lack of mitochondrial ferritin aggravated neurological deficits via enhancing oxidative stress in a traumatic brain injury murine model. Biosci Rep, 37

  63. Silva LF, Hoffmann MS, Gerbatin Rda R, Fiorin Fda S, Dobrachinski F, Mota BC et al (2013) Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury. J Neurotrauma 30:1278–1287

    Article  PubMed  PubMed Central  Google Scholar 

  64. Freire Royes LF, Cassol G (2016) The effects of creatine supplementation and physical exercise on traumatic brain injury. Mini Rev Med Chem 16:29–39

    Article  CAS  PubMed  Google Scholar 

  65. Moccia F, Berra-Romani R, Tanzi F (2012) Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 3:127–158

    Article  PubMed  PubMed Central  Google Scholar 

  66. Surai PF, Kochish, II, Fisinin VI, Kidd MT (2019) Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants (Basel), 8

  67. Van Gelder CM, Doherty JM, Shatos MA (1999) Effects of alpha-thrombin on superoxide dismutase levels in human cerebral microvascular endothelial cells. J Trauma 47:885–890

    Article  PubMed  Google Scholar 

  68. Khaper N, Bryan S, Dhingra S, Singal R, Bajaj A, Pathak CM et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13:1033–1049

    Article  CAS  PubMed  Google Scholar 

  69. Mendez MF (2017) What is the relationship of traumatic brain injury to dementia? J Alzheimers Dis 57:667–681

    Article  CAS  PubMed  Google Scholar 

  70. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med, 4:134ra160

  71. Sharma R, Leung WL, Zamani A, O'Brien TJ, Casillas Espinosa PM, Semple BD (2019) Neuroinflammation in post-traumatic epilepsy: pathophysiology and tractable therapeutic targets. Brain Sci, 9

  72. Ma L, Dorling A (2012) The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 34:63–72

    Article  CAS  PubMed  Google Scholar 

  73. Iannucci J, Renehan W, Grammas P (2020) Thrombin, a mediator of coagulation, inflammation, and neurotoxicity at the neurovascular interface: implications for alzheimer’s disease. Front Neurosci 14:762

    Article  PubMed  PubMed Central  Google Scholar 

  74. Crawley JT, Zanardelli S, Chion CK, Lane DA (2007) The central role of thrombin in hemostasis. J Thromb Haemost 5(Suppl 1):95–101

    Article  CAS  PubMed  Google Scholar 

  75. Menzel K, Hilberg T (2011) Blood coagulation and fibrinolysis in healthy, untrained subjects: effects of different exercise intensities controlled by individual anaerobic threshold. Eur J Appl Physiol 111:253–260

    Article  CAS  PubMed  Google Scholar 

  76. el-Sayed MS (1996) Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med, 22:282–298

  77. Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W et al (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:172–177

    Article  CAS  PubMed  Google Scholar 

  78. Schobersberger W, Wirleitner B, Puschendorf B, Koller A, Villiger B, Frey W et al (1996) Influence of an ultramarathon race at moderate altitude on coagulation and fibrinolysis. Fibrinolysis 10:37–42

    Article  CAS  Google Scholar 

  79. Bärtsch P, Haeberli A, Straub PW (1990) Blood coagulation after long distance running: antithrombin III prevents fibrin formation. Thromb Haemost 63:430–434

    Article  PubMed  Google Scholar 

  80. El-Sayed MS, Jones PG, Sale C (1999) Exercise induces a change in plasma fibrinogen concentration: fact or fiction? Thromb Res 96:467–472

    Article  CAS  PubMed  Google Scholar 

  81. Eriksson-Berg M, Egberg N, Eksborg S, Schenck-Gustafsson K (2002) Retained fibrinolytic response and no coagulation activation after acute physical exercise in middle-aged women with previous myocardial infarction. Thromb Res 105:481–486

    Article  CAS  PubMed  Google Scholar 

  82. Zetterberg E, Ljungkvist M, Salim M (2018) Impact of exercise on hemophilia. Semin Thromb Hemost 44:787–795

    Article  PubMed  Google Scholar 

  83. Franchini M, Fasoli S, Gandini G, Giuffrida AC (2018) Impact of exercise/sport on well-being in congenital bleeding disorders. Semin Thromb Hemost 44:796–801

    Article  PubMed  Google Scholar 

  84. Posthuma JJ, van der Meijden PE, Ten Cate H, Spronk HM (2015) Short- and Long-term exercise induced alterations in haemostasis: a review of the literature. Blood Rev 29:171–178

    Article  PubMed  Google Scholar 

  85. Zadow EK, Adams MJ, Kitic CM, Wu SSX, Fell JW (2018) Acquired and genetic thrombotic risk factors in the athlete. Semin Thromb Hemost 44:723–733

    Article  PubMed  Google Scholar 

  86. Tozzi-Ciancarelli MG, Penco M, Di Massimo C (2002) Influence of acute exercise on human platelet responsiveness: possible involvement of exercise-induced oxidative stress. Eur J Appl Physiol 86:266–272

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Heigenhauser GJ, Wood CM (1994) Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism. J Exp Biol 195:227–258

    Article  CAS  PubMed  Google Scholar 

  88. Gram AS, Bladbjerg EM, Skov J, Ploug T, Sjödin A, Rosenkilde M et al (2015) Three months of strictly controlled daily endurance exercise reduces thrombin generation and fibrinolytic risk markers in younger moderately overweight men. Eur J Appl Physiol 115:1331–1338

    Article  PubMed  Google Scholar 

  89. Hilberg T, Menzel K, Wehmeier UF (2013) Endurance training modifies exercise-induced activation of blood coagulation: RCT. Eur J Appl Physiol 113:1423–1430

    Article  CAS  PubMed  Google Scholar 

  90. Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S et al (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122

    Article  CAS  PubMed  Google Scholar 

  91. Wang JS, Chung Y, Chow SE (2009) Exercise affects platelet-impeded antitumor cytotoxicity of natural killer cell. Med Sci Sports Exerc 41:115–122

    Article  CAS  PubMed  Google Scholar 

  92. Kotwal J, Apte CV, Kotwal A, Mukherjee B, Jayaram J (2007) High altitude: a hypercoagulable state: results of a prospective cohort study. Thromb Res 120:391–397

    Article  CAS  PubMed  Google Scholar 

  93. Chen YC, Ho CW, Tsai HH, Wang JS (2015) Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Clin Sci (Lond) 128:425–436

    Article  CAS  Google Scholar 

  94. Małkiewicz MA, Szarmach A, Sabisz A, Cubała WJ, Szurowska E, Winklewski PJ (2019) Blood-brain barrier permeability and physical exercise. 16:15

  95. He Y, Liu W, Koch LG, Britton SL, Keep RF, Xi G et al (2013) Susceptibility to intracerebral hemorrhage-induced brain injury segregates with low aerobic capacity in rats. Neurobiol Dis 49:22–28

    Article  PubMed  Google Scholar 

  96. Ni W, Gao F, Zheng M, Koch LG, Britton SL, Keep RF et al (2016) Effects of aerobic capacity on thrombin-induced hydrocephalus and white matter injury. Acta Neurochir Suppl 121:379–384

    Article  PubMed  Google Scholar 

  97. Xiang H, Chen S, Zhou J, Guo J, Zhou Q, Zhou Q (2020) Characterization of blood-derived exosomal proteins after exercise. J Int Med Res 48:300060520957541

    Article  CAS  PubMed  Google Scholar 

  98. Kicken CH, van der Vorm LN, Zwaveling S, Schoenmaker E, Remijn JA, Huskens D et al (2019) A hypoxic environment attenuates exercise-induced procoagulant changes due to decreased platelet activation. TH Open 3:e216–e226

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cwikiel J, Seljeflot I, Berge E, Arnesen H, Wachtell K, Ulsaker H et al (2017) Pro-coagulant activity during exercise testing in patients with coronary artery disease. Thromb J 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu LH, Chang SC, Fu TC, Huang CH, Wang JS (2017) High-intensity interval training improves mitochondrial function and suppresses thrombin generation in platelets undergoing hypoxic stress. Sci Rep 7:4191

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sedgwick MJ, Thompson M, Garnham J, Thackray AE, Barrett LA, Powis M et al (2016) Acute high-intensity interval rowing increases thrombin generation in healthy men. Eur J Appl Physiol 116:1139–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39:3–11

    Article  CAS  PubMed  Google Scholar 

  103. Stigger F, Marcolino MAZ, Portela KM, Plentz RDM (2018) Effects of exercise on inflammatory, oxidative and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci

  104. Griesbach GS (2011) Exercise after traumatic brain injury: is it a double-edged sword? PM R 3:S64-72

    Article  PubMed  Google Scholar 

  105. Archer T, Svensson K, Alricsson M (2012) Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 125:293–302

    Article  CAS  PubMed  Google Scholar 

  106. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159

    Article  CAS  PubMed  Google Scholar 

  107. Tofas T, Draganidis D, Deli CK (2019) Exercise-induced regulation of redox status in cardiovascular diseases: the role of exercise training and detraining, 9

  108. Gomez-Pinilla F, Hillman C (2013) The influence of exercise on cognitive abilities. Compr Physiol 3:403–428

    Article  PubMed  PubMed Central  Google Scholar 

  109. da Silva FF, de Oliveira Ferreira AP, Ribeiro LR, Silva LF, de Castro MR, da Silva LR et al (2016) The impact of previous physical training on redox signaling after traumatic brain injury in rats: a behavioral and neurochemical approach. J Neurotrauma 33:1317–1330

    Article  PubMed  Google Scholar 

  110. Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A (2012) Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 99:149–162

    Article  CAS  PubMed  Google Scholar 

  111. Navarro A, Boveris A (2009) Brain mitochondrial dysfunction and oxidative damage in Parkinson’s disease. J Bioenerg Biomembr 41:517–521

    Article  CAS  PubMed  Google Scholar 

  112. de Castro MRT, Ferreira APO, Busanello GL, da Silva LRH, da Silveira Junior MEP, Fiorin FDS, et al. (2017) Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. 595: 6023-6044

  113. Fletcher-Sandersjoo A, Maegele M, Bellander BM (2020) Does complement-mediated hemostatic disturbance occur in traumatic brain injury? A literature review and observational study protocol. Int J Mol Sci, 21

  114. Mota BC, Pereira L, Souza MA, Silva LF, Magni DV, Ferreira AP et al (2012) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res 21:175–184

    Article  CAS  PubMed  Google Scholar 

  115. Toldy A, Stadler K, Sasvari M, Jakus J, Jung KJ, Chung HY et al (2005) The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res Bull 65:487–493

    Article  CAS  PubMed  Google Scholar 

  116. Salo DC, Donovan CM, Davies KJ (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 11:239–246

    Article  CAS  PubMed  Google Scholar 

  117. Viguie CA, Frei B, Shigenaga MK, Ames BN, Packer L, Brooks GA (1985) Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993(75):566–572

    Google Scholar 

  118. Leeuwenburgh C, Heinecke JW (2001) Oxidative stress and antioxidants in exercise. Curr Med Chem 8:829–838

    Article  CAS  PubMed  Google Scholar 

  119. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. 19:771-783

  120. Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, et al. (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. 20: 406-416

  122. Prakash R, Carmichael ST (2015) Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 28:556–564

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pan YX, Gao L, Wang WZ, Zheng H, Liu D, Patel KP et al (2007) Exercise training prevents arterial baroreflex dysfunction in rats treated with central angiotensin II. Hypertension 49:519–527

    Article  CAS  PubMed  Google Scholar 

  125. Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC (2017) Maintenance of blood-brain barrier integrity in hypertension: a novel benefit of exercise training for autonomic control. Front Physiol 8:1048

    Article  PubMed  PubMed Central  Google Scholar 

  126. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  CAS  PubMed  Google Scholar 

  127. Kottke MA, Walters TJ (2016) Where’s the leak in vascular barriers? A review. Shock 46:20–36

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: MF and LFR; literature search and analysis: WP, AN, and KG; drafted and developed the framework for the work: WP, KG, NB, LFR, and MF; tables, figures, and reference management: WP and AN; critically revised: NB, AF, MS, LFR, and MF. All authors read and approved the final version of this manuscript.

Corresponding author

Correspondence to Michele Rechia Fighera.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Publication

Authors consent for the publication of the manuscript.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papalia, W.L., Nascimento, A.S., Krishna, G. et al. Physical Exercise as a Modulator of Vascular Pathology and Thrombin Generation to Improve Outcomes After Traumatic Brain Injury. Mol Neurobiol 59, 1124–1138 (2022). https://doi.org/10.1007/s12035-021-02639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02639-9

Keywords

Navigation