Skip to main content
Log in

Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags was investigated to facilitate recycling of Cr in steelmaking slags. The slags exhibit good Newtonian behavior at high temperature. The viscosity of acidic slag first increases from 0.825 to 1.141 Pa·s as the Al2O3 content increases from 0 to 10wt% and then decreases to 1.071 Pa·s as the Al2O3 content increases further to 15wt%. The viscosity of basic slag first increases from 0.084 to 0.158 Pa·s as the Al2O3 content increases from 0 to 15wt% and then decreases to 0.135 Pa·s as the Al2O3 content increases further to 20wt%. Furthermore, Cr2O3-containing slag requires less Al2O3 to reach the maximum viscosity than Cr2O3-free slag; the Al2O3 contents at which the behavior changes are 10wt% and 15wt% for acidic and basic slags, respectively. The activation energy of the slags is consistent with the viscosity results. Raman spectra demonstrate that [AlO4] tetrahedra appear initially and were replaced by [AlO6] octahedra with further addition of Al2O3. The dissolved organic phosphorus content of the slag first increases and then decreases with increasing Al2O3 content, which is consistent with the viscosity and Raman results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.I. Miyamoto, K. Kato, and T. Yuki, Effect of slag properties on reduction rate of chromium oxide in Cr2O3 containing slag by carbon in steel, Tetsu-to-Hagane, 88(2002), No. 12, p. 838.

    Article  CAS  Google Scholar 

  2. X.T. Zeng, C.H. Yuan, H. Xu, J.X. Han and Y. Tian, Development status quo of the world chromite resources and investment suggestion, China Min., 24(2015), No. 8, p. 16.

    Google Scholar 

  3. M. Kekkonen, H. Oghbasilasie, and S. Louhenkilpi, Viscosity Models for Molten Slags, Aalto University publication series, Helsinki, 2012.

    Google Scholar 

  4. L.J. Wang and S. Seetharaman, Experimental studies on the oxidation states of chromium oxides in slag systems, Metall. Mater. Trans. B, 41(2010), No. 5, p. 946.

    Article  CAS  Google Scholar 

  5. V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995.

    Google Scholar 

  6. E. Minami, M. Amatatsu, and N. Sano, Viscosity measurement of slag containing chromium oxide, Tetsu-to-Hagane, 73(1987), p. S871.

    Google Scholar 

  7. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.

    Article  CAS  Google Scholar 

  8. C. Xu, W.L. Wang, L.J. Zhou, S.L. Xie, and C. Zhang, The effects of Cr2O3 on the melting, viscosity, heat transfer, and crystallization behaviors of mold flux used for the casting of Cr-bearing alloy steels, Metall. Mater. Trans. B, 46(2015), No. 2, p. 882.

    Article  CAS  Google Scholar 

  9. W.J. Huang, Y.H. Zhao, S. Yu, L.X. Zhang, Z.C. Ye, N. Wang, and M. Chen, Viscosity property and structure analysis of FeO-SiO2-V2O3-TiO2-Cr2O3 slags, ISIJ Int., 56(2016), No. 4, p. 594.

    Article  CAS  Google Scholar 

  10. R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241.

  11. Q.H. Li, J.T. Gao, Y.L. Zhang, Z.Q. An, and Z.C. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 346.

    Article  CAS  Google Scholar 

  12. L. Forsbacka, and L. Holappa, Viscosity of SiO2-CaO-CrOx slags in contact with metallic chromium and application of the Iida model, [in] VII International Conference on Molten Slags, Fluxes and Salts, Johannesburg, 2004, p. 129.

  13. L. Forsbacka, L. Holappa, A. Kondratiev, and E. Jak, Experimental study and modelling of viscosity of chromium containing slags, Steel Res. Int., 78(2007), No. 9, p. 676.

    Article  CAS  Google Scholar 

  14. L. Forsbacka and L. Holappa, Viscosity of CaO-CrOx-SiO2 slags in a relatively high oxygen partial pressure atmosphere, Scand. J. Metall., 33(2004), No. 5, p. 676.

    Article  Google Scholar 

  15. K.C. Mills, L. Yuan, Z. Li, G.H. Zhang, and K.C. Chou, A review of the factors affecting the thermophysical properties of silicate slags, High Temp. Mater. Processes, 31(2012), No. 4–5, p. 301.

    Article  CAS  Google Scholar 

  16. F. Yuan, Z. Zhao, Y.L. Zhang, J.T. Gao, and T. Wu, Viscosity measurements of CrO-bearing CaO-SiO2-5%Al2O3-CrO slag equilibrating with metallic Cr, ISIJ Int., 60(2020), No. 3, p. 613.

    Article  CAS  Google Scholar 

  17. T. Wu, Y.L. Zhang, F. Yuan, and Z.Q. An, Effects of the Cr2O3 content on the viscosity of CaO-SiO2-10Pct Al2O3-Cr2O3 quaternary slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1719.

    Article  CAS  Google Scholar 

  18. J.H. Park, H. Kim, and D.J. Min, Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: Focus on the amphoteric behavior of alumina, Metall. Mater. Trans. B, 39(2008), No. 1, p. 150.

    Article  CAS  Google Scholar 

  19. J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2 (−MgO) −Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269.

    Article  Google Scholar 

  20. F. Shahbazian, S.C. Du, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO-FeO-SiO2-CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155.

    Article  CAS  Google Scholar 

  21. H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692.

    Article  CAS  Google Scholar 

  22. B.O. Mysen, D. Virgo, and C.M. Scarfe, Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study, Am. Mineral., 65(1980), No. 7–8, p. 690.

    CAS  Google Scholar 

  23. P. McMillan, A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2, Am. Mineral., 69(1984), No. 7–8, p. 645.

    CAS  Google Scholar 

  24. D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229(2006), No. 1–3, p. 173.

    Article  CAS  Google Scholar 

  25. I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in iron-making, Steel Res. Int., 83(2012), No. 7, p. 611.

    Article  CAS  Google Scholar 

  26. C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797.

    Article  CAS  Google Scholar 

  27. K.Z. Gu, W.L. Wang, J. Wei, H. Matsuura, F. Tsukihashi, I. Sohn, and D.J. Min, Heat-transfer phenomena across mold flux by using the inferred emitter technique, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1393.

    Article  CAS  Google Scholar 

  28. L. Forsbacka, L. Holappa, T. Iida, Y. Kita, and Y. Toda, Experimental study of viscosities of selected CaO-MgO-Al2O3-SiO2 slags and application of the Iida model, Scand. J. Metall., 32(2003), No. 5, p. 273.

    Article  CAS  Google Scholar 

  29. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291.

    Article  CAS  Google Scholar 

  30. Y.B. Cheng, C. Xu, S.Y. Pan, Y.F. Xia, R.C. Liu, and S.X. Wang, An investigation of the structural effects of Fe3+ in the alkali-silicate glasses, J. Non-Cryst. Solids, 80(1986), No. 1–3, p. 201.

    CAS  Google Scholar 

  31. L. Forsbacka, Experiences in Slag Viscosity Measurement by Rotation Cylinder Method, Helsinki University of Technology, Helsinki, 2015.

    Google Scholar 

  32. M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2-FeO-Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820.

    Article  CAS  Google Scholar 

  33. J.H. Park, Composition-structure-property relationships of CaO-MO-SiO2 (M = Mg2+, Mn2+) systems derived from micro-Raman spectroscopy, J. Non Cryst. Solids, 358(2012), No. 23, p. 3096.

    Article  CAS  Google Scholar 

  34. Z. Kalicka, E. Kawecka-Cebula, and K. Pytel, Application of the Iida model for estimation of slag viscosity for Al2O3-Cr2O3-CaO-CaF2 systems, Arch. Metall. Mater., 54(2009), No. 1, p. 179.

    CAS  Google Scholar 

  35. J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-FeO-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756.

    Article  CAS  Google Scholar 

  36. C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho, Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 18.

    Article  CAS  Google Scholar 

  37. J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO-MgO-Al2O3-SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322.

    Article  CAS  Google Scholar 

  38. S. Arrhenius, The viscosity of aqueous mixture, Z. Phys. Chem., 1(1887), p. 285.

    Article  Google Scholar 

  39. K.C. Mills, The influence of structure on the physico-chemical properties of slags, ISIJ Int., 33(1993), No. 1, p. 148.

    Article  CAS  Google Scholar 

  40. G.C. Jiang and J.L. You, High temperature Raman spectroscopy used in the study of microstructure of silicate melts, J. Chin. Ceram. Soc., 31(2003), No. 10, p. 998.

    CAS  Google Scholar 

  41. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751.

    Article  Google Scholar 

  42. T.S. Kim and J.H. Park, Structure-viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031.

    Article  CAS  Google Scholar 

  43. L.J. Wang, Y.X. Wang, Q. Wang, and K. Chou, Raman structure investigations of CaO-MgO-Al2O3-SiO2-CrOx and its correlation with sulfide capacity, Metall. Mater. Trans. B, 47(2016), No. 1, p. 10.

    Article  CAS  Google Scholar 

  44. T.J. Dines and S. Inglis, Raman spectroscopic study of supported chromium(VI) oxide catalysts, Phys. Chem. Chem. Phys., 5(2003), No. 6, p. 1320.

    Article  CAS  Google Scholar 

  45. J.J. Yang, H.F. Cheng, W.N. Martens, and R.L. Frost, Transition of synthetic chromium oxide gel to crystalline chromium oxide: A hot-stage Raman spectroscopic study, J. Raman Spectrosc., 42(2011), No. 5, p. 1069.

    Article  CAS  Google Scholar 

  46. J.D. Frantza and B.O. Mysen, Raman spectra and structure of BaO-SiO2-SrO-SiO2 and CaO-SiO2 melts to 1600°C, Chem. Geol., 121(1995), No. 1–4, p. 155.

    Article  Google Scholar 

  47. B.O. Mysen and J.D. Frantz, Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO2 to 1669°C, Am. Mineral., 78(1993), No. 7–8, p. 699.

    CAS  Google Scholar 

  48. Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen, Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts, Acta Phys. Sin., 54(2005), No. 2, art. No. 961.

  49. B.O. Mysen and J.D. Frantz, Silicate melts at magmatic temperatures: In-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units, Contrib. Mineral. Petrol., 117(1994), No. 1, p. 1.

    Article  CAS  Google Scholar 

  50. J.F. Stebbins, Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results, J. NonCryst. Solids, 106(1988), No. 1–3, p. 359.

    Article  CAS  Google Scholar 

  51. J.L. You, G.C. Jiang, and K.D. Xu, High temperature Raman spectra of sodium disilicate crystal, glass and its liquid, J. NonCryst. Solids, 282(2001), No. 1, p. 125.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1960201) and the National Key R&D Program of China (No. 2019YFC 1905701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Zhang.

Additional information

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Zhao, Z., Zhang, Y. et al. Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags. Int J Miner Metall Mater 29, 1522–1531 (2022). https://doi.org/10.1007/s12613-021-2306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2306-2

Keywords

Navigation