Skip to main content
Log in

Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2 (-MgO)-Al2O3 slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The viscosity of CaO-SiO2 (-MgO)-Al2O3 slags was measured to clarify the effects of Al2O3 and MgO on the structure and viscous flow of molten slags at high temperatures. Furthermore, the infrared spectra of the quenched slags were analyzed to understand the structural role of Al2O3 in the polymerization or depolymerization of silicate network. The Al2O3 behaves as an amphoteric oxide with the composition of slags; that is, the alumina behaves as a network former up to about 10 mass pct Al2O3, while it acts as a network modifier, in parts, in the composition greater than 10 mass pct Al2O3. This amphoteric role of Al2O3 in the viscous flow of molten slags at the Newtonian flow region was diminished by the coexistence of MgO. The effect of Al2O3 on the viscosity increase can be understood based on an increase in the degree of polymerization (DOP) by the incorporation of the [AlO4]-tetrahedra into the [SiO4]-tetrahedral units, and this was confirmed by the infrared (IR) spectra of the quenched slags. The influence of alumina on the viscosity decrease can be explained on the basis of a decrease in the DOP by the increase in the relative fraction of the [AlO6]-octahedral units. The relative intensity of the IR bands for the [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing Al2O3 content greater than the critical point, i.e., about 10 mass pct in the present systems. The variations of the activity coefficient of slag components with composition indirectly supported those of viscosity and structure of the aluminosilicate melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Turkdogan and P.M. Bills: Ceram. Bull., 1960, vol. 39, pp. 682–87.

    CAS  Google Scholar 

  2. P.M. Bills: J. Iron Steel Inst., 1963, vol. 201, pp. 133–40.

    CAS  Google Scholar 

  3. G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061–72.

    Article  CAS  Google Scholar 

  4. R.A. Berryman and I.D. Sommerville: Proc. 3rd Int. Conf. on Molten Slags and Fluxes, Glasgow, June 27–29, 1988, IOM, London, 1989, pp. 202–06.

    Google Scholar 

  5. K.C. Mills: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 148–55.

    CAS  Google Scholar 

  6. N. Iwamoto: Trans. JWRI, 1979, vol. 8, pp. 139–49.

    CAS  Google Scholar 

  7. B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678–701.

    CAS  Google Scholar 

  8. Y. Iguchi, K. Yonezawa, Y. Funaoka, S. Ban-ya, and Y. Nishina: Proc. 3rd Int. Conf. Molten Slags and Fluxes, Glasgow, June 27–29, 1988, IOM, London, 1989, pp. 169–71.

    Google Scholar 

  9. L.G. Hwa, S.L. Hwang, and L.C. Liu: J. Non-Cryst. Solids, 1998, vol. 238, pp. 193–97.

    Article  CAS  Google Scholar 

  10. G. Jiang and X. Zhang: Proc. 4th Int. Conf. Molten Slags and Fluxes, Sendai, June 8–11, 1992, Iron and Steel Institute of Japan, Sendai, 1992, pp. 28–33.

    Google Scholar 

  11. R.G. Duan, K.M. Liang, and S.R. Gu: Mater. Trans., JIM, 1998, vol. 39, pp. 1162–63.

    CAS  Google Scholar 

  12. L. Zhang and S. Jahanshahi: Proc. 6th Int. Conf. Molten Slags, Fluxes, and Salts, Stockholm-Helsinki, June 12–17, 2000, KTH, Stockholm, CD-ROM paper 008.

    Google Scholar 

  13. L. Zhang, S. Sun, and S. Jahanshahi: Proc. 6th Int. Conf. Molten Slags, Fluxes, and Salts, Stockholm-Helsinki, June 12–17, (2000), KTH, Stockholm, CD-ROM Paper 074.

    Google Scholar 

  14. B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690–710.

    CAS  Google Scholar 

  15. D.M. Zirl and S.H. Garofalini: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2848–56.

    Article  CAS  Google Scholar 

  16. T. Uchino, T. Sakka, Y. Ogata, and M. Iwasaki: J. Phys. Chem., 1993, vol. 97, pp. 9642–49.

    Article  CAS  Google Scholar 

  17. H. Doweidar: J. Non-Cryst. Solids, 1998, vol. 240, pp. 55–65.

    Article  CAS  Google Scholar 

  18. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press, London, 1974, vol. 1, pp. 106–11.

    Google Scholar 

  19. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723–29.

    CAS  Google Scholar 

  20. J.H. Park, H.S. Song, and D.J. Min: J. Kor. Inst. Met. and Mater., 2002, vol. 40, pp. 1111–17.

    CAS  Google Scholar 

  21. J.H. Park, D.J. Min, and H.S. Song: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 38–43.

    CAS  Google Scholar 

  22. J.H. Park, D.J. Min, and H.S. Song: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 344–51.

    CAS  Google Scholar 

  23. M. Kowalski, P.J. Spencer, and D. Neuschutz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995, pp. 99–180.

    Google Scholar 

  24. K.C. Mills: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995, pp. 349–512.

    Google Scholar 

  25. T. Iida and Y. Shiraishi: Handbook of Physico-Chemical Properties at High Temperatures, Iron and Steel Institute of Japan Jpn., Tokyo, 1988, pp. 93–144.

    Google Scholar 

  26. J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35, pp. 322–25.

    Article  CAS  Google Scholar 

  27. P. Kozakevitch: Rev. Metall., 1960, vol. 57, pp. 149–60.

    CAS  Google Scholar 

  28. Y.S. Lee, J.H. Park, D.J. Min, S.H. Yi, and W.W. Huh: 61st Iron-making Conf. Proc., Nashville, TN, Mar. 10–13, 2002, ISS-AIME, Warrendale, PA, 2002, pp. 155–65.

    Google Scholar 

  29. A. Paul: Chemistry of Glasses, 2nd ed., Chapman & Hall, London, 1990, pp. 16–50.

    Google Scholar 

  30. P. Kozakevitch and N. Misra: Rev. Metall., 1966, vol. 63, pp. 471–76.

    CAS  Google Scholar 

  31. T. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi: J. Non-Cryst. Solids, 1981, vol. 44, pp. 369–78.

    Article  CAS  Google Scholar 

  32. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 645–59.

    CAS  Google Scholar 

  33. R.W. Luth: Am. Mineral., 1988, vol. 73, pp. 297–305.

    CAS  Google Scholar 

  34. K. Kume, K. Morita, T. Miki, and N. Sano: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 561–66.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Min, D.J. & Song, H.S. Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2 (-MgO)-Al2O3 slags. Metall Mater Trans B 35, 269–275 (2004). https://doi.org/10.1007/s11663-004-0028-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0028-2

Keywords

Navigation