Skip to main content
Log in

Effects of MgO/Al2O3 Ratio and Basicity on the Viscosities of CaO-MgO-SiO2-Al2O3 Slags: Experiments and Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of the MgO/Al2O3 ratio and basicity on the viscosities of CaO-MgO-SiO2-Al2O3 slags were investigated at 1733 K, 1773 K, and 1823 K (1460 °C, 1500 °C, and 1550 °C) in this study. At a fixed Al2O3 of 15 and 18 mass pct, increasing the basicity from 1 to 1.2 resulted in lowering the viscosity of slags. At a fixed basicity of 1.0 and 1.2, increasing the MgO from 0 to 15 mass pct decreased the viscosity of slags. The Fourier transform-infrared spectra analysis of the slag structure was made to discuss the depolymerization roles of MgO and basicity. Considering the different depolymerization effects of basic oxides upon the silicate/aluminate network structure as suggested by FT-IT analysis, a fresh model for predicting the viscosity of CaO-MgO-SiO2-Al2O3 slags was constructed. A total of 209 viscosity measurements with large compositional variations showed satisfactory agreement with the results calculated by the present model. With the aid of the current model, the co-effects of the MgO/Al2O3 ratio and basicity on the viscosities of CaO-MgO-SiO2-Al2O3 slags (15 to 20 mass pct Al2O3) were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.O.M. Bockris and D.C. Lowe: Proc. R. Soc., 1954, vol. 226, pp. 423-35.

    Article  Google Scholar 

  2. J.O.M. Bockris, J.D. Mackenzie, and J.A. Kitchener: Trans. Faraday Soc., 1955, vol. 51, pp. 1734-48.

    Article  Google Scholar 

  3. J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1945, vol. 28(11), pp. 310-6.

    Article  Google Scholar 

  4. J.S. Machin and T.B. Yee: J. Am. Ceram. Soc., 1948, vol. 31(7), pp. 200-4.

    Article  Google Scholar 

  5. J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35 (12), pp. 322-6.

    Article  Google Scholar 

  6. J.S. Machin, and T.B. Yee: J. Am. Ceram. Soc., 1954, vol. 37(4), pp. 177-86.

    Article  Google Scholar 

  7. G. Urbain: Steel Res. Int., 1987, vol. 58(3), pp.111-6.

    Google Scholar 

  8. M. Nakamoto, T. Tanaka, J. Lee, and T. Usui: ISIJ Int., 2004, vol. 44(12), pp. 2115-9.

    Article  Google Scholar 

  9. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B(2), pp. 269-75.

    Article  Google Scholar 

  10. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B(6), pp. 911-5.

    Article  Google Scholar 

  11. J.L. Liao, Y.Y. Zhang, S. Seetharaman, X.D. Wang, and Z.T. Zhang: ISIJ Int., 2012, vol. 52(5), pp. 753-8.

    Article  Google Scholar 

  12. H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B(1), pp. 5-12.

    Article  Google Scholar 

  13. L. Gan and C.B. Lai: Metall. Mater. Trans. B, 2014, vol. 45B(3), pp. 875-88.

    Article  Google Scholar 

  14. H. Kim, W.H. Kim, I. Sohn, and D. J. Min: Steel Res. Int, 2010, vol. 81(4), pp. 261-4.

    Article  Google Scholar 

  15. M. Chen, D.W. Zhang, M.Y. Kou, and B.J. Zhao: ISIJ Int., 2014, vol. 54(9), pp. 2025-30.

    Article  Google Scholar 

  16. P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachberichte Huettenpraxis Metallweiterverarbeitung, 1981, vol. 19(10), pp. 859-69.

    Google Scholar 

  17. A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32B(6), pp. 1015-25.

    Article  Google Scholar 

  18. L. Forsbacka, L. Holappa, A. Kondratiev, and E. Jak: Steel Res. Int., 2007, vol. 78, pp. 676-84.

    Google Scholar 

  19. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi: ISIJ Int., 2004, vol. 44(8), pp.1283-90.

    Article  Google Scholar 

  20. M. Suki and E. Jak: Metall. Mater. Trans. B, 2013, vol. 44B(6), pp. 1435-50.

    Article  Google Scholar 

  21. G.H. Zhang, K.C. Chou, and K. Mills: ISIJ Int., 2012, vol. 52(3), pp. 355-62.

    Article  Google Scholar 

  22. Q.F. Shu: Steel Res. Int., 2009, vol. 80(1), pp. 107-13.

    Google Scholar 

  23. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima: ISIJ Int., 2006, vol. 46(2), pp. 375-84.

    Google Scholar 

  24. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B(6), pp. 150-3.

    Article  Google Scholar 

  25. M. Nakamoto, Y. Miyabayashi, L. Holappa, and T. Tanaka: ISIJ Int., 2007, vol. 47(10), pp. 1409-15.

    Article  Google Scholar 

  26. T. Matsumiya, K. Shimoda, K. Saito, K. Kanehashi, and W. Yamada: ISIJ Int., 2007, vol. 47(6), pp. 802-4.

    Article  Google Scholar 

  27. G.H. Zhang and K.C. Chou: Metall. Mater. Trans. B, 2012, vol. 43B(4), pp. 841-8.

    Article  Google Scholar 

  28. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B(1), 177-86.

    Article  Google Scholar 

  29. L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B(1), pp. 186-94.

    Google Scholar 

  30. T. Dosdale and R.J. Brook: J. Mater. Sci., 1978, vol. 13, pp. 167–72.

    Article  Google Scholar 

  31. Y. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi: J. Non-Cryst. Solid., 1981, vol. 44(2-3), pp. 369-78.

    Article  Google Scholar 

  32. P. Lin and A. Pelton: Metall. Trans. B, 1979, vol. 10B (4), pp. 667-75.

    Article  Google Scholar 

  33. S.C. Du, J. Bygden, and S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 519–25.

    Google Scholar 

  34. S. Seetharaman and S.C. Du: Metall. Mater. Trans. B, 1994, vol. 25B(4), pp. 589-95.

    Article  Google Scholar 

  35. S. Seetharaman, S.C. Du, and F.-Z. Ji: Metall. Mater. Trans. B, 2000, vol.31B(2), pp. 105-9.

    Article  Google Scholar 

  36. F.-Z. Ji: Metall. Mater. Trans. B, 2001, vol.32B(1), pp. 181-6.

    Article  Google Scholar 

  37. J.F. Stebbins and Z. Xu: Nature, 1997, vol. 390(6655), pp. 60-2.

    Article  Google Scholar 

  38. M.J. Toplis and D.B. Dingwell: Geochimi. Cosmochimi. Acta, 2004, vol. 68(24), pp. 5169-88.

    Article  Google Scholar 

  39. B.N. Roy and A. Navrotsky: J. Am. Ceram. Soc. 1984, vol. 67(9), pp. 606-10.

    Article  Google Scholar 

  40. A. Wiedenroth and R. Rüssel: J. Non-Cryst. Solid., 2003, vol. 318(1-2), pp. 79-86.

    Article  Google Scholar 

  41. I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83(7), pp. 611-30.

    Article  Google Scholar 

  42. M. Susa, Y. Kamijo, K. Kusano, and R. Kojima: Eur. J. Glass Sci. Technol., 2005, vol. 46, pp. 55–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Pengcheng.

Additional information

Manuscript submitted May 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pengcheng, L., Xiaojun, N. Effects of MgO/Al2O3 Ratio and Basicity on the Viscosities of CaO-MgO-SiO2-Al2O3 Slags: Experiments and Modeling. Metall Mater Trans B 47, 446–457 (2016). https://doi.org/10.1007/s11663-015-0470-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0470-3

Keywords

Navigation