Skip to main content
Log in

Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Méar, P. Yot, M. Cambon, and M. Ribes, The characterization of waste cathode-ray tube glass, Waste Manage., 26(2006), No. 12, p. 1468.

    Article  Google Scholar 

  2. Y.C. Jang and T.G. Townsend, Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates, Environ. Sci. Technol., 37(2003), No. 20, p. 4778.

    Article  Google Scholar 

  3. Q.B. Xu, G.M. Li, W.Z. He, J.W. Huang, and X. Shi, Cathode ray tube (CRT) recycling: current capabilities in China and research progress, Waste Manage., 32(2012), No. 8, p. 1566.

    Article  Google Scholar 

  4. J.R. Gregory, M.C. Nadeau, and R.E. Kirchain, Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass, Environ. Sci. Technol., 43(2009), No. 24, p. 9245.

    Article  Google Scholar 

  5. E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963.

    Article  Google Scholar 

  6. Z. Matamoros-Veloza, J.C. Rendón-Angeles, K. Yanagisawa, M.A. Cisneros-Guerrero, M.M. Cisneros-Guerrero, and L. Aguirre, Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique, J. Eur. Ceram. Soc., 28(2008), No. 4, p. 739.

    Article  Google Scholar 

  7. F. Méar, P. Yot, R. Viennois, and M. Ribes, Mechanical behaviour and thermal and electrical properties of foam glass, Ceram. Int., 33(2007), No. 4, p. 543.

    Article  Google Scholar 

  8. F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, R. Falcone, and S. Hreglich, Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses, Waste Manage., 25(2005), No. 2, p. 183.

    Article  Google Scholar 

  9. E. Bernardo, Micro- and macro-cellular sintered glassceramics from wastes, J. Eur. Ceram. Soc., 27(2007), No. 6, p. 2415.

    Article  Google Scholar 

  10. T.C. Ling and C.S. Poon, Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar, J. Hazard. Mater., 192(2011), No. 2, p. 451.

    Article  Google Scholar 

  11. T.C. Ling and C.S. Poon, Effects of particle size of treated CRT funnel glass on properties of cement mortar, Mater. Struct., 46(2013), No. 1, p. 25.

    Article  Google Scholar 

  12. H. Miyoshi, D.P. Chen, and T. Akai, A novel process utilizing subcritical water to remove lead from wasted lead silicate glass, Chem. Lett., 33(2004), No. 8, p. 956.

    Article  Google Scholar 

  13. K. Pruksathorn and S. Damronglerd, Lead recovery from waste frit glass residue of electronic plant by chemical-electrochemical methods, Korean J. Chem. Eng., 22(2005), No. 6, p. 873.

    Article  Google Scholar 

  14. A.J. Saterlay, S.J. Wilkins, and R.G. Compton, Towards greener disposal of waste cathode ray tubes via ultrasonically enhanced lead leaching, Green Chem., 3(2001), No. 4, p. 149.

    Article  Google Scholar 

  15. W.Y. Yuan, J.H. Li, Q.W. Zhang, and F. Saito, Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass, Environ. Sci. Technol., 46(2012), No. 7, p. 4109.

    Article  Google Scholar 

  16. R. Sasai, H. Kubo, M. Kamiya, and H. Itoh, Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent, Environ. Sci. Technol., 42(2008), No. 11, p. 4159.

    Article  Google Scholar 

  17. M.J. Chen, F.S. Zhang, and J.X. Zhu, Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process, J. Hazard. Mater., 161(2009), No. 2-3, p. 1109.

    Article  Google Scholar 

  18. X.W. Lu, K.M. Shih, C.S. Liu, and F. Wang, Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron, Environ. Sci. Technol., 47(2013), No. 17, p. 9972.

    Article  Google Scholar 

  19. T. Okada and S. Yonezawa, Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass, Waste Manage., 33(2013), No. 8, p. 1758.

    Article  Google Scholar 

  20. M.F. Xing and F.S. Zhang, Nano-lead particle synthesis from waste cathode ray-tube funnel glass, J. Hazard. Mater., 194(2011), No. 5, p. 407.

    Article  Google Scholar 

  21. M.F. Xing, Y.P. Wang, J. Li, and H. Xu, Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process, J. Hazard. Mater., 305(2016), p. 51.

    Article  Google Scholar 

  22. J.F. Lv, H.Y. Yang, Z.N. Jin, Z.Y. Ma, and Y. Song, Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process, Waste Manage., 57(2016), p. 198.

    Article  Google Scholar 

  23. M. Chen, S. Raghunath, and B.J. Zhao, Viscosity measurements of SiO2–“FeO”–MgO system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 45(2014), No. 1, p. 58.

    Article  Google Scholar 

  24. A. Kondratiev, E. Jak, and P.C. Hayes, Predicting slag viscosities in metallurgical systems, JOM, 54(2002), No. 11, p. 41.

    Article  Google Scholar 

  25. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Experimental investigation of the viscosities in CaO–SiO2–MgO–Al2O3 and CaO–SiO2–MgO–Al2O3–TiO2 slags, Metall. Mater. Trans. B, 38(2007), No. 6, p. 911.

    Article  Google Scholar 

  26. H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692.

    Article  Google Scholar 

  27. M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820.

    Article  Google Scholar 

  28. F. Shahbazian, D. Sichen, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO–“FeO”–SiO2–CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155.

    Article  Google Scholar 

  29. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283.

    Article  Google Scholar 

  30. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291.

    Article  Google Scholar 

  31. Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of P2O5 and FetO on the viscosity and slagstructure in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 758.

    Article  Google Scholar 

  32. E. Jak, B. Zhao, and P.C. Hayes, Experimental study of phase equilibria in the systems Fe–Zn–O and Fe–Zn–Si–O at metallic iron saturation, Metall. Mater. Trans. B, 31(2000), No. 6, p. 1195.

    Article  Google Scholar 

  33. H.Y. Shi, L.G. Chen, A. Malfliet, P.T. Jones, B. Blanpain, and M.X. Guo, Study of phase relations of ZnO-containing fayalite slag under Fe saturation, Metall. Mater. Trans. B, 47(2016), No. 5, p. 2820.

    Article  Google Scholar 

  34. Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353.

    Article  Google Scholar 

  35. C. Feng, M.S. Chu, J. Tang, J. Qin, F. Li, and Z.G. Liu, Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 868.

    Article  Google Scholar 

  36. W.H. Kim, I. Sohn, and D.J. Min, A study on the viscous behaviour with K2O additions in the CaO–SiO2–Al2O3–MgO–K2O quinary slag system, Steel Res. Int., 81(2010), No. 9, p. 735.

    Article  Google Scholar 

  37. K.J. Schumacher, J.F. White, and J.P. Downey, Viscosities in the calcium-silicate slag system in the range of 1798 K to 1973 K (1525°C to 1700°C), Metall. Mater. Trans. B, 46(2015), No. 1, p. 119.

    Article  Google Scholar 

  38. L.S. Wu, J. Gran, and S. Du, The effect of calcium fluoride on slag viscosity, Metall. Mater. Trans. B, 42(2011), No. 5, p. 928.

    Article  Google Scholar 

  39. L. Wang, Y.R. Cui, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, Y. Sasaki, and O. Ostrovski, Melting properties and viscosity of SiO2–CaO–Al2O3–B2O3 system, Steel Res. Int., 86(2015), No. 6, p. 670.

    Article  Google Scholar 

  40. J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO–SiO2(–MgO)–Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269.

    Article  Google Scholar 

  41. H. Kim, W.H. Kim, I. Sohn, and D.J. Min, The effect of MgO on the viscosity of the CaO–SiO2–20wt%Al2O3–MgO slag system, Steel Res. Int., 81(2010), No. 4, p. 261.

    Article  Google Scholar 

  42. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn, Effect of Al2O3 and CaO/SiO2 on the iscosity of calcium–silicate-based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2012), No. 1, p. 5.

    Article  Google Scholar 

  43. Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 537.

    Article  Google Scholar 

  44. N. Saito, N. Hori, K. Nakashima, and K. Mori, Viscosity of blast furnace type slags, Metall. Mater. Trans. B, 34(2003), No. 5, p. 509.

    Article  Google Scholar 

  45. J.P. Yu, L.J. Wang, Y.X. Wang, Y.Q. Liu, and G.Z. Zhou, Effect of Fe2+ and Fe3+ on the properties of melts containing FeOx, J. Iron Steel Res., 26(2014), No. 10, p. 1.

    Google Scholar 

  46. H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.

    Article  Google Scholar 

  47. K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang, Investigation of the viscosity and structural properties of CaO–SiO2–TiO2 slags, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1389.

    Article  Google Scholar 

  48. B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert, Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 67(1982), No. 7-8, p. 686.

    Google Scholar 

  49. G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, and F.M.B. Marques, Raman spectra of apatites: La10-xSi6-y(Al,Fe)yO26±δ, J. Raman Spectrosc., 38(2007), No. 1, p. 21.

    Article  Google Scholar 

  50. D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc., 28(1997), No. 11, p. 873.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51374066 and 51304047), the National Key Technologies R&D Program (No. 2014BAC03B07), and the Industrial Research Projects in Liaoning Province, China (Nos. 2012223002 and 2014020037). The authors also wish to express gratitude to Prof. Wolfgang Sand, Donghua University, China and Mining Academy, Technical University, Freiberg, Germany, for his assistance with writing improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-nan Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Jf., Jin, Zn., Yang, Hy. et al. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags. Int J Miner Metall Mater 24, 756–767 (2017). https://doi.org/10.1007/s12613-017-1459-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1459-5

Keywords

Navigation