Skip to main content
Log in

Thermodynamics of the Formation of MgO-Al2O3-TiO x Inclusions in Ti-Stabilized 11Cr Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The equilibration between CaO-SiO2-MgO-Al2O3-CaF2 (-TiO2) slag and Fe-11 mass pct Cr ferritic stainless steel melts was investigated at 1873 K in order to clarify the effect of Al and Ti addition as well as that of slag composition on the formation of complex oxide inclusions. The activity of oxygen calculated from the classical Wagner formalism changes from about a O = 0.0002 to 0.001 and the values of a O from [Al]/(Al2O3) and that from [Si]/(SiO2) equilibria are in relatively good agreement with each other with some scatters. The phase stability diagram of the inclusions and the equilibrium iso-[O] lines in the Fe-11 mass pct Cr-0.5 mass pct Si-0.3 mass pct Mn-0.0005 mass pct Mg steel melts was constructed by using FACTSAGE 5.5 program as a function of Al and Ti contents. The computed iso-[O] lines were slightly larger than the values estimated from the slag-metal equilibria. The composition of the inclusions could be plotted on the computed MgO-Al2O3-TiO x phase diagram. The inclusions in the steel melts equilibrated with the basic slags are located in the “spinel + liquid” region, while those in equilibrium with the less basic slags are mostly in the “liquid” single phase. This is in good accordance to the observed morphology of the inclusions. However, in cases of high concentration of Ti and Al, the inclusions were found to be spinel + liquid, even though the less basic slags are equilibrated. When plotted on logarithmic scales, the mole ratio \( {\left( {{X_{{{\text{MgO}}}} \times X_{{{\text{Al}}_{{\text{2}}} {\text{O}}_{{\text{3}}} }} } \mathord{\left/ {\vphantom {{X_{{{\text{MgO}}}} \times X_{{{\text{Al}}_{{\text{2}}} {\text{O}}_{{\text{3}}} }} } {X_{{{\text{Ti}}_{{\text{2}}} {\text{O}}_{{\text{3}}} }} }}} \right. \kern-\nulldelimiterspace} {X_{{{\text{Ti}}_{{\text{2}}} {\text{O}}_{{\text{3}}} }} }} \right)} \) of the inclusions (spinel potential) was expressed as a linear function of \( {\left\lfloor {{a_{{{\text{Mg}}}} \times a^{2}_{{{\text{Al}}}} \times a_{{\text{O}}} } \mathord{\left/ {\vphantom {{a_{{{\text{Mg}}}} \times a^{2}_{{{\text{Al}}}} \times a_{{\text{O}}} } {a^{2}_{{{\text{Ti}}}} }}} \right. \kern-\nulldelimiterspace} {a^{2}_{{{\text{Ti}}}} }} \right\rfloor } \) of the steel melts with a slope of unity theoretically expected. Also, the spinel potential is very low and nearly constant when the activity of Al2O3 is less than that of TiO2 in the slag saturated by MgO, whereas it linearly increases by increasing the \( \log \;{\left( {{a_{{{\text{Al}}_{{\text{2}}} {\text{O}}{}_{{\text{3}}}}} } \mathord{\left/ {\vphantom {{a_{{{\text{Al}}_{{\text{2}}} {\text{O}}{}_{{\text{3}}}}} } {a_{{{\text{TiO}}_{{\text{2}}} }} }}} \right. \kern-\nulldelimiterspace} {a_{{{\text{TiO}}_{{\text{2}}} }} }} \right)} \) at \( {\left( {{X_{{{\text{Al}}_{{\text{2}}} {\text{O}}{}_{{\text{3}}}}} } \mathord{\left/ {\vphantom {{X_{{{\text{Al}}_{{\text{2}}} {\text{O}}{}_{{\text{3}}}}} } {X_{{{\text{TiO}}_{{\text{2}}} }} }}} \right. \kern-\nulldelimiterspace} {X_{{{\text{TiO}}_{{\text{2}}} }} }} \right)} > 1 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. FactSage is a trademark of ESM software, Hamilton, OH.

References

  1. M. Hasegawa, S. Maruhashi, Y. Kamidate, Y. Muranaka, F. Hoshi: Tetsu-to-Hagané, 1984, vol. 70, pp. 1704–11

    CAS  Google Scholar 

  2. Y. Gao, K. Sorimachi: ISIJ Int., 1993, vol. 33, pp. 291–97

    Article  CAS  Google Scholar 

  3. R. Maddalena, R. Rastogi, S. Bassem, A.W. Cramb: Iron Steelmaker, 2000, vol. 27, pp. 71–79

    CAS  Google Scholar 

  4. R.C. Nunnington and N. Sutcliffe: 59th Electric Furnace Conf. Proc., Phoenix, AZ, Nov. 11–14, 2001, ISS, Warrendale, PA, 2002, pp. 361–94

  5. H. Zheng, W. Chen, and Y. Hu: AISTech 2004: Iron & Steel Tech. Conf. Proc., Nashville, TN, Sept. 15–17, 2004, AIST, Warrendale, PA, 2004, pp. 937–45

  6. J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, P.K. Yang: ISIJ Int., 1996, vol. 36, pp. S140–S143

    Article  Google Scholar 

  7. D.S. Kim, J.H. Park, Jong H. Park, S.B. Lee, H.G. Lee: Rev. Metall., 2004, no. 4, pp. 291–99

    Article  Google Scholar 

  8. H. Fujimura, S. Tsuge, Y. Komizo, T. Nishizawa: Tetsu-to-Hagané, 2001, vol. 87, pp. 707–12

    CAS  Google Scholar 

  9. T. Koseki, H. Inoue: J. Jpn. Inst. Met., 2001, vol. 65, pp. 644–51

    CAS  Google Scholar 

  10. B. Granier, R. Renard, and J.P. Coultures: High Temp. Ceramics (France), 1980, vol. 17, pp. 235–47

  11. L. Liao, R.J. Fruehan: Iron Steelmaker, 1989, vol. 16, pp. 91–97

    Google Scholar 

  12. S.K. Jo, B. Song, S.H. Kim: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09

    Article  CAS  Google Scholar 

  13. J.H. Park, D.S. Kim: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 495–502

    Article  CAS  Google Scholar 

  14. G. Okuyama, K. Yamaguchi, S. Takeuchi, K. Sorimachi: ISIJ Int., 2000, vol. 40, pp. 121–28

    Article  CAS  Google Scholar 

  15. J.H. Park, D.J. Min: Mater. Trans., 2006, vol. 47, pp. 2038–43

    Article  CAS  Google Scholar 

  16. J.H. Park, Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791–98

    Article  CAS  Google Scholar 

  17. J.H. Park: Mater. Sci. Eng. A, 2008, vol. 472, pp. 43–51

    Article  CAS  Google Scholar 

  18. H. Itoh, M. Hino, S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773–78

    CAS  Google Scholar 

  19. K. Suzuki, S. Ban-ya, M. Hino: ISIJ Int., 2001, vol. 41, pp. 813–17

    Article  CAS  Google Scholar 

  20. Steelmaking Data Sourcebook, The Japan Society for the Promotion of Science, 19th Committee of Steelmaking, Gordon and Breach Science Publications, New York, NY, 1988, pp. 273–325

  21. H.R. Gaye: in The Making, Shaping and Treating of Steel, 11th ed., Casting Volume, The AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 1–8

  22. Z. Hong, X. Wu, C. Kun: Steel Res., 1995, vol. 66, pp. 72–76

    CAS  Google Scholar 

  23. K. Morita, M. Ohta, A. Yamada, and M. Ito: ICS 2005 Conf. Proc., Charlotte, NC, May 9–12, 2005, AIST, Warrendale, PA, 2005, pp. 15–22

  24. J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim, Y.Y. Lee: ISIJ Int., 2005, vol. 45, pp. 1106–11

    Article  CAS  Google Scholar 

  25. J.J. Pak, J.T. Yoo, Y.S. Jeong, S.J. Tae, S.M. Seo, D.S. Kim, Y.D. Lee: ISIJ Int., 2005, vol. 45, pp. 23–29

    Article  CAS  Google Scholar 

  26. J.J. Pak, J.J. Jo, S.I. Kim, W.I. Kim, T.I. Chung, S.M. Seo, J.H. Park, D.S. Kim: ISIJ Int., 2007, vol. 47, pp. 16–24

    Article  CAS  Google Scholar 

  27. J.D. Seo, S.H. Kim: Steel Res., 2000, vol. 71, pp. 101–06

    CAS  Google Scholar 

  28. T. Itoh, T. Nagasaka, M. Hino: ISIJ Int., 2000, vol. 40, pp. 1051–58

    Article  CAS  Google Scholar 

  29. K. Takahashi, M. Hino: High Temp. Mater. Proc., 2000, vol. 19, pp. 1–10

    Google Scholar 

  30. H. Ohta, H. Suito: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 119–29

    Article  CAS  Google Scholar 

  31. J. Lehmann and H. Gaye: 82nd ISS Steelmaking Conf. Proc., Chicago, IL, Mar. 21–24, 1999, ISS, Warrendale, PA, 1999, pp. 463–70

  32. H. Gaye, M. Faral, and J. Lehmann: Rev. Metall., 2003, vol. 2, pp. 125–34

  33. http://www.factsage.com/

  34. I.H. Jung, S.A. Devterov, A.D. Pelton: ISIJ Int., 2004, vol. 44, pp. 527–36

    Article  CAS  Google Scholar 

  35. L. Kaufman: Physica B and C, 1988, vol. 150, pp. 99–114

    Article  CAS  MathSciNet  Google Scholar 

  36. F. Ruby-Meyer, J. Lehmann, H. Gaye: Scand. J. Metall., 2000, vol. 29, pp. 206–12

    Article  CAS  Google Scholar 

  37. H. Itoh, M. Hino, S. Ban-ya: Tetsu-to-Hagané, 1997, vol. 83, pp. 623–28

    CAS  Google Scholar 

  38. T. Nishi, K. Shinme: Tetsu-to-Hagané, 1998, vol. 84, pp. 97–102

    CAS  Google Scholar 

  39. T. Nishi, K. Shinme: Tetsu-to-Hagané, 1998, vol. 84, pp. 837–43

    Google Scholar 

  40. J.H. Park: Calphad, 2007, vol. 31, pp. 428–37

    Article  CAS  Google Scholar 

  41. J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 657–63

    Article  ADS  CAS  Google Scholar 

  42. C.O. Ariyo, L.E.K. Holappa: Scand. J. Metall., 2002, vol. 31, pp. 385–92

    Article  CAS  Google Scholar 

  43. P. Kozakevitch: Rev. Metall., 1960, vol. 57, pp. 149–60

    CAS  Google Scholar 

  44. J.H. Park, D.J. Min, H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75

    Article  CAS  Google Scholar 

  45. C.H.P. Lupis: Chemical Thermodynamics of Materials, Prentice Hall, New York, NY, pp. 255–57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted January 20, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Lee, SB. & Gaye, H.R. Thermodynamics of the Formation of MgO-Al2O3-TiO x Inclusions in Ti-Stabilized 11Cr Ferritic Stainless Steel. Metall Mater Trans B 39, 853–861 (2008). https://doi.org/10.1007/s11663-008-9172-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9172-4

Keywords

Navigation