Skip to main content
Log in

Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Silicon (Si) is a representative anode material for next-generation lithium-ion batteries due to properties such as a high theoretical capacity, suitable working voltage, and high natural abundance. However, due to inherently large volume expansions (~ 400%) during insertion/deinsertion processes as well as poor electrical conductivity and unstable solid electrolyte interfaces (SEI) films, Si-based anodes possess serious stability problems, greatly hindering practical application. To resolve these issues, the modification of Si anodes with carbon (C) is a promising method which has been demonstrated to enhance electrical conductivity and material plasticity. In this review, recent researches into Si/C anodes are grouped into categories based on the structural dimension of Si materials, including nanoparticles, nanowires and nanotubes, nanosheets, and porous Si-based materials, and the structural and electrochemical performance of various Si/C composites based on carbon materials with varying structures will be discussed. In addition, the progress and limitations of the design of existing Si/C composite anodes are summarized, and future research perspectives in this field are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Copyright 2015 Journal of Power Sources

Fig. 2

Copyright 2016 Nano Energy

Fig. 3

Copyright 2015 Advanced Functional Materials

Fig. 4

Copyright 2017 Angewandte Chemie International Edition

Scheme 3
Fig. 5

Copyright 2016 ACS Nano

Fig. 6

Copyright 2016 Carbon

Fig. 7

Copyright 2015 ACS Applied Materials and Interfaces

Fig. 8

Copyright 2015 Nano Letters

Scheme 4
Fig. 9

Copyright 2018 Advanced Materials

Fig. 10

Copyright 2015 Journal of Materials Chemistry A

Fig. 11

Copyright 2016 Advanced Functional Materials

Fig. 12

Copyright 2015 Nature Communications

Scheme 5
Fig. 13

Copyright 2015 Electrochimica Acta

Fig. 14

Copyright 2016 ACS Applied Materials and Interfaces

Fig. 15

Copyright 2017 Electrochimica Acta

Fig. 16

Copyright 2017 Journal of Materials Chemistry A

Fig. 17

Copyright 2015 Journal of Materials Chemistry A

Fig. 18

Copyright 2016 Nature Energy

Scheme 6
Fig. 19

Copyright 2017 ACS Applied Materials and Interfaces

Fig. 20

Copyright 2015 Journal of Materials Chemistry A

Scheme 7
Fig. 21

Copyright 2015 Nano Letters

Fig. 22

Copyright 2016 Advanced Energy Materials

Fig. 23

Copyright 2017 ACS Applied Materials and Interfaces

Fig. 24

Copyright 2015 ACS Nano

Scheme 8
Fig. 25

Copyright 2018 Small

Fig. 26

Copyright 2017 ACS Nano

Scheme 9
Fig. 27

Copyright 2017 ACS Nano

Fig. 28

Copyright 2015 ACS Nano

Scheme 10
Fig. 29

Copyright 2016 Journal of Power Sources

Scheme 11
Fig. 30
Fig. 31
Scheme 12
Fig. 32

Copyright 2015 Electrochimica Acta

Fig. 33

Copyright 2017 Electrochimica Acta

Fig. 34

Copyright 2016 Journal of Power Sources

Fig. 35

Copyright 2017 ACS Applied Materials and Interfaces

Similar content being viewed by others

References

  1. Yu, H., Duan, J., Du, W., et al.: China’s energy storage industry: develop status, existing problems and countermeasures. Renew. Sustain. Energy Rev. 71, 767–784 (2017)

    Article  Google Scholar 

  2. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava, M., Singh, J., Kuila, T., et al.: Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7, 4820–4868 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Ellis, B.L., Knauth, P., Djenizian, T.: Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 26, 3368–3397 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Hoffert, M.I., Caldeira, K., Benford, G., et al.: Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298, 981–987 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Midilli, A., Dincer, I., Ay, M.: Green energy strategies for sustainable development. Energy Policy 34, 3623–3633 (2006)

    Article  Google Scholar 

  7. Wu, X.L., Guo, Y.G., Wan, L.J.: Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. Chem. Asian J. 8, 1948–1958 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012)

    Article  CAS  Google Scholar 

  9. Solangi, K.H., Islam, M.R., Saidur, R., et al.: A review on global solar energy policy. Renew. Sustain. Energy Rev. 15, 2149–2163 (2011)

    Article  Google Scholar 

  10. Herbert, G.M.J., Iniyan, S., Sreevalsan, E., et al.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11, 1117–1145 (2007)

    Article  Google Scholar 

  11. Liu, J., Zhang, J.G., Yang, Z., et al.: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929–946 (2013)

    Article  CAS  Google Scholar 

  12. Deng, Y., Wan, L., Xie, Y., et al.: Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4, 23914–23935 (2014)

    Article  CAS  Google Scholar 

  13. Xia, X., Zhang, Y., Chao, D., et al.: Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008–5048 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Goodenough, J.B., Manthiram, A.: A perspective on electrical energy storage. MRS Commun. 4, 135–142 (2014)

    Article  CAS  Google Scholar 

  15. Goodenough, J.B.: Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Ko, M., Oh, P., Chae, S., et al.: Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 11, 4058–4073 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Vlad, A., Singh, N., Galande, C., et al.: Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 1402115 (2015)

    Article  CAS  Google Scholar 

  19. Yu, S.H., Lee, S.H., Lee, D.J., et al.: Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12, 2146–2172 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. Scrosati, B., Hassoun, J., Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011)

    Article  CAS  Google Scholar 

  21. Deng, D.: Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3, 385–418 (2015)

    Article  Google Scholar 

  22. Yu, H.C., Ling, C., Bhattacharya, J., et al.: Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760 (2014)

    Article  CAS  Google Scholar 

  23. Marom, R., Amalraj, S.F., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011)

    Article  CAS  Google Scholar 

  24. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  25. Scrosati, B., Garche, J.: Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)

    Article  CAS  Google Scholar 

  26. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Roy, P., Srivastava, S.K.: Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3, 2454–2484 (2015)

    Article  CAS  Google Scholar 

  28. Wang, Z., Zhou, L., Lou, X.W.: Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903–1911 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, K., Hu, Z., Tao, Z., et al.: Inorganic and organic materials for rechargeable Li batteries with multi-electron reaction. Sci. China Mater. 57, 42–58 (2014)

    Article  Google Scholar 

  30. Zhang, L., Wu, H.B., Lou, X.W.: Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 4, 1300958 (2014)

    Article  CAS  Google Scholar 

  31. Obrovac, M.N.: Si-alloy negative electrodes for Li-ion batteries. Curr. Opin. Electrochem. 9, 8–17 (2018)

    Article  CAS  Google Scholar 

  32. Nitta, N., Yushin, G.: High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Charact. 31, 317–336 (2014)

    Article  CAS  Google Scholar 

  33. Goriparti, S., Miele, E., De Angelis, F., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  34. An, J., Shi, L., Chen, G., et al.: Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 5, 19738–19744 (2017)

    Article  CAS  Google Scholar 

  35. Shu, Z.X., Mcmillan, R.S., Murray, J.J.: Electrochemical intercalation of lithium into graphite. J. Electrochem. Soc. 140, 922–927 (1993)

    Article  CAS  Google Scholar 

  36. Scrosati, B.: Recent advances in lithium ion battery materials. Electrochim. Acta 45, 2461–2466 (2000)

    Article  CAS  Google Scholar 

  37. Jiang, H., Zhang, H., Fu, Y., et al.: Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage. ACS Nano 10, 1648–1654 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    Article  CAS  Google Scholar 

  39. Abraham, K.M.: Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6, 830–844 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Guo, X., Sun, B., Su, D., et al.: Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Sci. Bull. 62, 442–452 (2017)

    Article  CAS  Google Scholar 

  41. Dou, F., Shi, L., Song, P., et al.: Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem. Eng. J. 338, 488–495 (2018)

    Article  CAS  Google Scholar 

  42. Han, J., Chen, G., Yan, T., et al.: Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem. Eng. J. 347, 273–279 (2018)

    Article  CAS  Google Scholar 

  43. McDowell, M.T., Lee, S.W., Nix, W.D., et al.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. Wang, X., Lv, L., Cheng, Z., et al.: High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6, 1502100 (2016)

    Article  CAS  Google Scholar 

  45. Deng, J., Ji, H., Yan, C., et al.: Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew. Chem. Int. Ed. 52, 2326–2330 (2013)

    Article  CAS  Google Scholar 

  46. Ko, M., Chae, S., Cho, J.: Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2, 1645–1651 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Key, B., Bhattacharyya, R., Morcrette, M., et al.: Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131, 9239–9249 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Key, B., Morcrette, M., Tarascon, J.M., et al.: Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J. Am. Chem. Soc. 133, 503–512 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. Boukamp, B.A.: All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725 (1981)

    Article  CAS  Google Scholar 

  50. Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007)

    Article  CAS  Google Scholar 

  51. Liu, X.H., Huang, S., Picraux, S.T., et al.: Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)

    Article  CAS  Google Scholar 

  53. Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. Zhuang, X., Song, P., Chen, G., et al.: Coralloid-like nanostructured c-nSi/SiOx@Cy anodes for high performance lithium ion battery. ACS Appl. Mater. Interfaces 9, 28464–28472 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. Maruyama, H., Nakano, H., Ogawa, M., et al.: Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes. Sci. Rep. 5, 13219 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su, X., Wu, Q., Li, J., et al.: Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014)

    Article  CAS  Google Scholar 

  57. Liang, B., Liu, Y., Xu, Y.: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469–490 (2014)

    Article  CAS  Google Scholar 

  58. Rahman, M.A., Song, G., Bhatt, A.I., et al.: Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26, 647–678 (2016)

    Article  CAS  Google Scholar 

  59. Luo, W., Chen, X., Xia, Y., et al.: Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7, 1701083 (2017)

    Article  CAS  Google Scholar 

  60. Ashuri, M., He, Q., Shaw, L.L.: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8, 74–103 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi, N., Inden, Y., Endo, M.: Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. J. Power Sources 326, 235–241 (2016)

    Article  CAS  Google Scholar 

  62. Ling, M., Xu, Y., Zhao, H., et al.: Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12, 178–185 (2015)

    Article  CAS  Google Scholar 

  63. Wen, C.J.: Electrochemical investigation of the lithium-gallium system. J. Electrochem. Soc. 128, 1636 (1981)

    Article  CAS  Google Scholar 

  64. Pan, L., Wang, H., Gao, D., et al.: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 50, 5878–5880 (2014)

    Article  CAS  Google Scholar 

  65. Obrovac, M.N., Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93 (2004)

    Article  CAS  Google Scholar 

  66. Ryu, J.H., Kim, J.W., Sung, Y.E., et al.: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306 (2004)

    Article  CAS  Google Scholar 

  67. Wang, J.: Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J. Electrochem. Soc. 133, 457 (1986)

    Article  CAS  Google Scholar 

  68. Du, F.H., Wang, K.X., Chen, J.S.: Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 4, 32–50 (2016)

    Article  CAS  Google Scholar 

  69. Liu, X.H., Fan, F., Yang, H., et al.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495–1503 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. Chang, J., Huang, X., Zhou, G., et al.: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater. 26, 758–764 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, X., Wan, L.J., Guo, Y.G.: Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9, 2684–2688 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. Verbrugge, M.W., Baker, D.R., Xiao, X., et al.: Experimental and theoretical characterization of electrode materials that undergo large volume changes and application to the lithium–silicon system. J. Phys. Chem. C 119, 5341–5349 (2015)

    Article  CAS  Google Scholar 

  73. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., et al.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137 (2001)

    Article  CAS  Google Scholar 

  74. Takamura, T., Ohara, S., Uehara, M., et al.: A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources 129, 96–100 (2004)

    Article  CAS  Google Scholar 

  75. Li, W., Tang, Y., Kang, W., et al.: Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 11, 1345–1351 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Yu, W.J., Liu, C., Hou, P.X., et al.: Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9, 5063–5071 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Liu, X.H., Liu, Y., Kushima, A., et al.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012)

    Article  CAS  Google Scholar 

  78. Kim, H., Seo, M., Park, M.H., et al.: A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010)

    Article  CAS  Google Scholar 

  79. Graetz, J., Ahn, C.C., Yazami, R., et al.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid State Lett. 6, A194 (2003)

    Article  CAS  Google Scholar 

  80. Becker, C.R., Strawhecker, K.E., McAllister, Q.P., et al.: In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries. ACS Nano 7, 9173–9182 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Ng, S.H., Wang, J., Wexler, D., et al.: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45, 6896–6899 (2006)

    Article  CAS  Google Scholar 

  82. Oumellal, Y., Delpuech, N., Mazouzi, D., et al.: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 6201 (2011)

    Article  CAS  Google Scholar 

  83. Chan, C.K., Ruffo, R., Hong, S.S., et al.: Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009)

    Article  CAS  Google Scholar 

  84. Tokranov, A., Kumar, R., Li, C., et al.: Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries. Adv. Energy Mater. 6, 1502302 (2016)

    Article  CAS  Google Scholar 

  85. Shkrob, I.A., Wishart, J.F., Abraham, D.P.: What makes fluoroethylene carbonate different? J. Phys. Chem. C 119, 14954–14964 (2015)

    Article  CAS  Google Scholar 

  86. Hou, G.L., Cheng, B.L., Cao, Y.B., et al.: Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24, 111–120 (2016)

    Article  CAS  Google Scholar 

  87. Holzapfel, M., Buqa, H., Hardwick, L.J., et al.: Nano silicon for lithium-ion batteries. Electrochim. Acta 52, 973–978 (2006)

    Article  CAS  Google Scholar 

  88. Liu, H.K., Guo, Z.P., Wang, J.Z., et al.: Si-based anode materials for lithium rechargeable batteries. J. Mater. Chem. 20, 10055 (2010)

    Article  CAS  Google Scholar 

  89. Beattie, S.D., Larcher, D., Morcrette, M., et al.: Si electrodes for Li-ion batteries: a new way to look at an old problem. J. Electrochem. Soc. 155, A158 (2008)

    Article  CAS  Google Scholar 

  90. Luo, F., Liu, B., Zheng, J., et al.: Review: nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 162, A2509–A2528 (2015)

    Article  CAS  Google Scholar 

  91. Nadimpalli, S.P.V., Sethuraman, V.A., Dalavi, S., et al.: Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J. Power Sources 215, 145–151 (2012)

    Article  CAS  Google Scholar 

  92. Aurbach, D., Markovsky, B., Salitra, G., et al.: Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 165, 491–499 (2007)

    Article  CAS  Google Scholar 

  93. Chen, L., Yan, B., Xu, J., et al.: Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries. ACS Appl. Mater. Interfaces 7, 13934–13943 (2015)

    Article  CAS  PubMed  Google Scholar 

  94. Wei, Q., An, Q., Chen, D., et al.: One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 14, 1042–1048 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Liu, N., Wu, H., McDowell, M.T., et al.: A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)

    Article  CAS  PubMed  Google Scholar 

  96. Liu, N., Lu, Z., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)

    Article  CAS  PubMed  Google Scholar 

  97. Yang, L.Y., Li, H.Z., Liu, J., et al.: Dual yolk–shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 5, 10908 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park, M.H., Kim, M.G., Joo, J., et al.: Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009)

    Article  CAS  PubMed  Google Scholar 

  99. Ruffo, R., Hong, S.S., Chan, C.K., et al.: Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009)

    Article  CAS  Google Scholar 

  100. Peng, K., Jie, J., Zhang, W., et al.: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008)

    Article  CAS  Google Scholar 

  101. Wen, Z., Lu, G., Mao, S., et al.: Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)

    Article  CAS  Google Scholar 

  102. Maranchi, J.P., Hepp, A.F., Kumta, P.N.: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State Lett. 6, A198 (2003)

    Article  CAS  Google Scholar 

  103. Biserni, E., Xie, M., Brescia, R., et al.: Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. J. Power Sources 274, 252–259 (2015)

    Article  CAS  Google Scholar 

  104. Demirkan, M.T., Trahey, L., Karabacak, T.: Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J. Power Sources 273, 52–61 (2015)

    Article  CAS  Google Scholar 

  105. Pal, S., Damle, S.S., Patel, S.H., et al.: Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. J. Power Sources 246, 149–159 (2014)

    Article  CAS  Google Scholar 

  106. Hwang, G., Park, H., Bok, T., et al.: A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem. Commun. 51, 4429–4432 (2015)

    Article  CAS  Google Scholar 

  107. Song, J., Chen, S., Zhou, M., et al.: Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2, 1257–1262 (2014)

    Article  CAS  Google Scholar 

  108. Yi, R., Dai, F., Gordin, M.L., et al.: Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013)

    Article  CAS  Google Scholar 

  109. Liu, N., Huo, K., McDowell, M.T., et al.: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 3, 1919 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kim, H., Han, B., Choo, J., et al.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 47, 10151–10154 (2008)

    Article  CAS  Google Scholar 

  111. Zhao, Y., Liu, X., Li, H., et al.: Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun. 48, 5079–5081 (2012)

    Article  CAS  Google Scholar 

  112. Shen, L., Guo, X., Fang, X., et al.: Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. J. Power Sources 213, 229–232 (2012)

    Article  CAS  Google Scholar 

  113. Cheng, H., Xiao, R., Bian, H., et al.: Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater. Chem. Phys. 144, 25–30 (2014)

    Article  CAS  Google Scholar 

  114. Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)

    Article  CAS  Google Scholar 

  115. Jiao, F., Bruce, P.G.: Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007)

    Article  CAS  Google Scholar 

  116. Liu, D., Liu, Z.J., Li, X., et al.: Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 13, 1702000 (2017)

    Article  CAS  Google Scholar 

  117. Tang, J., Dysart, A.D., Kim, D.H., et al.: Fabrication of carbon/silicon composite as lithium-ion anode with enhanced cycling stability. Electrochim. Acta 247, 626–633 (2017)

    Article  CAS  Google Scholar 

  118. Li, Z., Wang, W., Li, Z., et al.: Bridging porous Si–C composites with conducting agents for improving battery cycle life. J. Power Sources 286, 534–539 (2015)

    Article  CAS  Google Scholar 

  119. Sohn, H., Kim, D.H., Yi, R., et al.: Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries. J. Power Sources 334, 128–136 (2016)

    Article  CAS  Google Scholar 

  120. Sourice, J., Bordes, A., Boulineau, A., et al.: Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries. J. Power Sources 328, 527–535 (2016)

    Article  CAS  Google Scholar 

  121. Chen, Y., Xu, M., Zhang, Y., et al.: All-aqueous directed assembly strategy for forming high-capacity, stable silicon/carbon anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 21391–21397 (2015)

    Article  CAS  PubMed  Google Scholar 

  122. Sourice, J., Quinsac, A., Leconte, Y., et al.: One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 6637–6644 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, L., Rajagopalan, R., Guo, H., et al.: A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv. Funct. Mater. 26, 440–446 (2016)

    Article  CAS  Google Scholar 

  124. Chen, S., Shen, L., van Aken, P.A., et al.: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 29, 21 (2017)

    Google Scholar 

  125. Huang, S., Cheong, L.Z., Wang, D., et al.: Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 23672–23678 (2017)

    Article  CAS  PubMed  Google Scholar 

  126. Li, H.: A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2, 547 (1999)

    Article  CAS  Google Scholar 

  127. Kim, J.S., Pfleging, W., Kohler, R., et al.: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13–20 (2015)

    Article  CAS  Google Scholar 

  128. Xiao, X., Zhou, W., Kim, Y., et al.: Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-ion battery. Adv. Funct. Mater. 25, 1426–1433 (2015)

    Article  CAS  Google Scholar 

  129. Su, H., Barragan, A.A., Geng, L., et al.: Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 10780–10785 (2017)

    Article  CAS  Google Scholar 

  130. Li, W., Sun, X., Yu, Y.: Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance. Small Methods 1, 1600037 (2017)

    Article  CAS  Google Scholar 

  131. Nava, R., Cremar, L., Agubra, V., et al.: Centrifugal spinning: an alternative for large scale production of silicon–carbon composite nanofibers for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 29365–29372 (2016)

    Article  CAS  PubMed  Google Scholar 

  132. Han, Y., Zou, J., Li, Z., et al.: Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 12, 4835–4843 (2018)

    Article  CAS  PubMed  Google Scholar 

  133. Zhu, J., Wang, T., Fan, F., et al.: Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10, 8243–8251 (2016)

    Article  CAS  PubMed  Google Scholar 

  134. Wu, J., Qin, X., Miao, C., et al.: A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98, 582–591 (2016)

    Article  CAS  Google Scholar 

  135. Pandey, G.P., Klankowski, S.A., Li, Y., et al.: Effective infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers as anodes for solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 20909–20918 (2015)

    Article  CAS  PubMed  Google Scholar 

  136. Sun, C.F., Zhu, H., Okada, M., et al.: Interfacial oxygen stabilizes composite silicon anodes. Nano Lett. 15, 703–708 (2015)

    Article  CAS  PubMed  Google Scholar 

  137. Chen, C., Lee, S.H., Cho, M., et al.: Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces 8, 2658–2665 (2016)

    Article  CAS  PubMed  Google Scholar 

  138. Shen, C., Fang, X., Ge, M., et al.: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries. ACS Nano 12, 6280–6291 (2018)

    Article  CAS  PubMed  Google Scholar 

  139. Zhou, M., Li, X., Wang, B., et al.: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015)

    Article  CAS  PubMed  Google Scholar 

  140. Botas, C., Carriazo, D., Zhang, W., et al.: Silicon-reduced graphene oxide self-standing composites suitable as binder-free anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 28800–28808 (2016)

    Article  CAS  PubMed  Google Scholar 

  141. Chang, P., Liu, X., Zhao, Q., et al.: Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 9, 31879–31886 (2017)

    Article  CAS  PubMed  Google Scholar 

  142. Wang, B., Li, X., Luo, B., et al.: Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv. Mater. 27, 1526–1532 (2015)

    Article  CAS  PubMed  Google Scholar 

  143. Son, I.H., Park, J.H., Kwon, S., et al.: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yan, L., Liu, J., Wang, Q., et al.: In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 38159–38164 (2017)

    Article  CAS  PubMed  Google Scholar 

  145. Shan, C., Wu, K., Yen, H.J., et al.: Graphene oxides used as a new “dual role” binder for stabilizing silicon nanoparticles in lithium-ion battery. ACS Appl. Mater. Interfaces 10, 15665–15672 (2018)

    Article  CAS  PubMed  Google Scholar 

  146. Li, Y., Yan, K., Lee, H.W., et al.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016)

    Article  CAS  Google Scholar 

  147. Li, L., Zuo, Z., Shang, H., et al.: In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy 53, 135–143 (2018)

    Article  CAS  Google Scholar 

  148. Shang, H., Zuo, Z.C., Yu, L., et al.: Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 30, 1801459 (2018)

    Article  CAS  Google Scholar 

  149. Qi, W., Shapter, J.G., Wu, Q., et al.: Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5, 19521–19540 (2017)

    Article  CAS  Google Scholar 

  150. Ren, W., Zhang, Z., Wang, Y., et al.: Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J. Mater. Chem. A 3, 5859–5865 (2015)

    Article  CAS  Google Scholar 

  151. Chou, S.L., Wang, J.Z., Choucair, M., et al.: Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010)

    Article  CAS  Google Scholar 

  152. Ma, Y., Younesi, R., Pan, R., et al.: Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ storage and flexible integrated configuration. Adv. Funct. Mater. 26, 6797–6806 (2016)

    Article  CAS  Google Scholar 

  153. Hassan, F.M., Batmaz, R., Li, J., et al.: Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 6, 8597 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jeong, M.G., Du, H.L., Islam, M., et al.: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett. 17, 5600–5606 (2017)

    Article  CAS  PubMed  Google Scholar 

  155. Li, B., Yang, S., Li, S., et al.: From commercial sponge toward 3D graphene-silicon networks for superior lithium storage. Adv. Energy Mater. 5, 1500289 (2015)

    Article  CAS  Google Scholar 

  156. Shi, L., Wang, W., Wang, A., et al.: Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J. Mater. Chem. A3, 18190–18197 (2015)

    Article  CAS  Google Scholar 

  157. Song, Y., Li, X., Wei, C., et al.: A green strategy to prepare metal oxide superstructure from metal–organic frameworks. Sci. Rep. 5, 8401 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Song, Y., Li, X., Sun, L., et al.: Metal/metal oxide nanostructures derived from metal–organic frameworks. RSC Adv. 5, 7267–7279 (2015)

    Article  CAS  Google Scholar 

  159. Song, Y., Zuo, L., Chen, S., et al.: Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015)

    Article  CAS  Google Scholar 

  160. Roy, A.K., Zhong, M., Schwab, M.G., et al.: Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 7343–7348 (2016)

    Article  CAS  PubMed  Google Scholar 

  161. Zhuang, X., Zhang, Y., He, L., et al.: Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim. Acta 249, 166–172 (2017)

    Article  CAS  Google Scholar 

  162. Shen, T., Xia, X.H., Xie, D., et al.: Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 5, 11197–11203 (2017)

    Article  CAS  Google Scholar 

  163. Yun, Q., Qin, X., Lv, W., et al.: “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 93, 59–67 (2015)

    Article  CAS  Google Scholar 

  164. Zhang, Y., Pan, Y., Chen, Y., et al.: Towards reducing carbon content in silicon/carbon anodes for lithium ion batteries. Carbon 112, 72–78 (2017)

    Article  CAS  Google Scholar 

  165. Kim, J.M., Guccini, V., Seong, K.D., et al.: Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon 118, 8–17 (2017)

    Article  CAS  Google Scholar 

  166. Liang, G., Qin, X., Zou, J., et al.: Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127, 424–431 (2018)

    Article  CAS  Google Scholar 

  167. Li, Q., Chen, D., Li, K., et al.: Electrostatic self-assembly bmSi@C/rGO composite as anode material for lithium ion battery. Electrochim. Acta 202, 140–146 (2016)

    Article  CAS  Google Scholar 

  168. Chen, Y., Hu, Y., Shen, Z., et al.: Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochim. Acta 210, 53–60 (2016)

    Article  CAS  Google Scholar 

  169. Yun, Q., Qin, X., He, Y.B., et al.: Micron-sized spherical Si/C hybrids assembled via water/oil system for high-performance lithium ion battery. Electrochim. Acta 211, 982–988 (2016)

    Article  CAS  Google Scholar 

  170. Jung, H., Kim, K.S., Park, S.E., et al.: The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery. Electrochim. Acta 245, 791–795 (2017)

    Article  CAS  Google Scholar 

  171. Chen, H., Wang, Z., Hou, X., et al.: Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 249, 113–121 (2017)

    Article  CAS  Google Scholar 

  172. Chen, Y., Hu, Y., Shao, J., et al.: Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. J. Power Sources 298, 130–137 (2015)

    Article  CAS  Google Scholar 

  173. Sun, W., Hu, R., Zhang, M., et al.: Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries. J. Power Sources 318, 113–120 (2016)

    Article  CAS  Google Scholar 

  174. Kim, Y.S., Shoorideh, G., Zhmayev, Y., et al.: The critical contribution of unzipped graphene nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries. Nano Energy 16, 446–457 (2015)

    Article  CAS  Google Scholar 

  175. Fei, L., Williams, B.P., Yoo, S.H., et al.: Graphene folding in Si rich carbon nanofibers for highly stable, high capacity Li-ion battery anodes. ACS Appl. Mater. Interfaces 8, 5243–5250 (2016)

    Article  CAS  PubMed  Google Scholar 

  176. Kim, S.Y., Lee, J., Kim, B.H., et al.: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 12109–12117 (2016)

    Article  CAS  PubMed  Google Scholar 

  177. Sun, Z., Wang, X., Ying, H., et al.: Facial synthesis of three-dimensional cross-linked cage for high-performance lithium storage. ACS Appl. Mater. Interfaces 8, 15279–15287 (2016)

    Article  CAS  PubMed  Google Scholar 

  178. Lyu, F., Sun, Z., Nan, B., et al.: Low-cost and novel Si-based gel for Li-ion batteries. ACS Appl. Mater. Interfaces 9, 10699–10707 (2017)

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, H., Qin, X., Wu, J., et al.: Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J. Mater. Chem. A 3, 7112–7120 (2015)

    Article  CAS  Google Scholar 

  180. Park, S.H., Ahn, D., Choi, Y.M., et al.: High-coulombic-efficiency Si-based hybrid microspheres synthesized by the combination of graphene and IL-derived carbon. J. Mater. Chem. A 3, 20935–20943 (2015)

    Article  CAS  Google Scholar 

  181. Chen, Y., Hu, Y., Shen, Z., et al.: Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J. Power Sources 342, 467–475 (2017)

    Article  CAS  Google Scholar 

  182. Agyeman, D.A., Song, K., Lee, G.H., et al.: Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 6, 1600904 (2016)

    Article  CAS  Google Scholar 

  183. Jing, S., Jiang, H., Hu, Y., et al.: Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 25, 5395–5401 (2015)

    Article  CAS  Google Scholar 

  184. An, G.H., Kim, H., Ahn, H.J.: Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage. ACS Appl. Mater. Interfaces 10, 6235–6244 (2018)

    Article  CAS  PubMed  Google Scholar 

  185. Liu, H., Shan, Z., Huang, W., et al.: Self-assembly of silicon@oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 4715–4725 (2018)

    Article  CAS  PubMed  Google Scholar 

  186. Xu, Q., Li, J.Y., Sun, J.K., et al.: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017)

    Article  CAS  Google Scholar 

  187. Zhang, Y.C., You, Y., Xin, S., et al.: Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25, 120–127 (2016)

    Article  CAS  Google Scholar 

  188. Park, B.H., Jeong, J.H., Lee, G.W., et al.: Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J. Power Sources 394, 94–101 (2018)

    Article  CAS  Google Scholar 

  189. Kim, J., Oh, C., Chae, C., et al.: 3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries. J. Mater. Chem. A 3, 18684–18695 (2015)

    Article  CAS  Google Scholar 

  190. Ko, M., Chae, S., Ma, J., et al.: Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016)

    Article  CAS  Google Scholar 

  191. Song, T., Xia, J., Lee, J.H., et al.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010)

    Article  CAS  PubMed  Google Scholar 

  192. Huang, R., Fan, X., Shen, W., et al.: Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95, 133119 (2009)

    Article  CAS  Google Scholar 

  193. Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core–shell nanowires for lithium battery anode material. Nano Lett. 8, 3688–3691 (2008)

    Article  CAS  PubMed  Google Scholar 

  194. Chockla, A.M., Harris, J.T., Akhavan, V.A., et al.: Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133, 20914–20921 (2011)

    Article  CAS  PubMed  Google Scholar 

  195. Wang, C., Luo, F., Lu, H., et al.: A well-defined silicon nanocone–carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 2806–2814 (2017)

    Article  CAS  PubMed  Google Scholar 

  196. Wang, B., Qiu, T., Li, X., et al.: Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J. Mater. Chem. A 3, 494–498 (2015)

    Article  CAS  Google Scholar 

  197. Xia, F., Kwon, S., Lee, W.W., et al.: Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett. 15, 6658–6664 (2015)

    Article  CAS  PubMed  Google Scholar 

  198. Salvatierra, R.V., Raji, A.R.O., Lee, S.K., et al.: Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv. Energy Mater. 6, 1600918 (2016)

    Article  CAS  Google Scholar 

  199. Wang, X., Li, G., Seo, M.H., et al.: Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 9551–9558 (2017)

    Article  CAS  PubMed  Google Scholar 

  200. Liu, J., Li, N., Goodman, M.D., et al.: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 9, 1985–1994 (2015)

    Article  CAS  PubMed  Google Scholar 

  201. Chen, S., Chen, Z., Xu, X., et al.: Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, 1703361 (2018)

    Article  CAS  Google Scholar 

  202. Suresh, S., Wu, Z.P., Bartolucci, S.F., et al.: Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape. ACS Nano 11, 5051–5061 (2017)

    Article  CAS  PubMed  Google Scholar 

  203. Han, X., Chen, H., Liu, J., et al.: A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta 156, 11–19 (2015)

    Article  CAS  Google Scholar 

  204. Zhang, Y., Du, N., Zhu, S., et al.: Porous silicon in carbon cages as high-performance lithium-ion battery anode materials. Electrochim. Acta 252, 438–445 (2017)

    Article  CAS  Google Scholar 

  205. Ren, W., Wang, Y., Tan, Q., et al.: Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: a high performing anode material in lithium ion battery. J. Power Sources 332, 88–95 (2016)

    Article  CAS  Google Scholar 

  206. Ren, W., Wang, Y., Zhang, Z., et al.: Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J. Mater. Chem. A 4, 552–560 (2016)

    Article  CAS  Google Scholar 

  207. Fang, S., Tong, Z., Nie, P., et al.: Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 18766–18773 (2017)

    Article  CAS  PubMed  Google Scholar 

  208. Lu, B., Ma, B., Deng, X., et al.: Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery. ACS Appl. Mater. Interfaces 9, 32829–32839 (2017)

    Article  CAS  PubMed  Google Scholar 

  209. Guo, S., Hu, X., Hou, Y., et al.: Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 42084–42092 (2017)

    Article  CAS  PubMed  Google Scholar 

  210. Liu, J., Kopold, P., van Aken, P.A., et al.: Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 9632–9636 (2015)

    Article  CAS  Google Scholar 

  211. Du, F.H., Ni, Y., Wang, Y., et al.: Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries. ACS Nano 11, 8628–8635 (2017)

    Article  CAS  PubMed  Google Scholar 

  212. Jia, H., Zheng, J., Song, J., et al.: A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50, 589–597 (2018)

    Article  CAS  Google Scholar 

  213. Vrankovic, D., Graczyk-Zajac, M., Kalcher, C., et al.: Highly porous silicon embedded in a ceramic matrix: a stable high-capacity electrode for Li-ion batteries. ACS Nano 11, 11409–11416 (2017)

    Article  CAS  PubMed  Google Scholar 

  214. Lu, Z., Liu, N., Lee, H.W., et al.: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015)

    Article  CAS  PubMed  Google Scholar 

  215. Yue, X., Sun, W., Zhang, J., et al.: Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. J. Power Sources 329, 422–427 (2016)

    Article  CAS  Google Scholar 

  216. Gao, X., Li, J., Xie, Y., et al.: A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 7855–7862 (2015)

    Article  CAS  PubMed  Google Scholar 

  217. Jin, Y., Zhang, S., Zhu, B., et al.: Simultaneous purification and perforation of low-grade Si sources for lithium-ion battery anode. Nano Lett. 15, 7742–7747 (2015)

    Article  CAS  PubMed  Google Scholar 

  218. Li, X., Yan, P., Xiao, X., et al.: Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 10, 1427–1434 (2017)

    Article  CAS  Google Scholar 

  219. Zhou, X., Han, K., Jiang, H., et al.: High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim. Acta 245, 14–24 (2017)

    Article  CAS  Google Scholar 

  220. Wang, J., Liu, D.H., Wang, Y.Y., et al.: Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. J. Power Sources 307, 738–745 (2016)

    Article  CAS  Google Scholar 

  221. Yang, Y., Yang, X., Chen, S., et al.: Rational design of hierarchical carbon/mesoporous silicon composite sponges as high-performance flexible energy storage electrodes. ACS Appl. Mater. Interfaces 9, 22819–22825 (2017)

    Article  CAS  PubMed  Google Scholar 

  222. Wang, W., Favors, Z., Li, C., et al.: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci. Rep. 7, 44838 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Key R&D Program of China (Grant No. 2017YFB0102200), the Shanghai Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials (Grant No. 16DZ2292100), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 16JC1401700, 15DZ1170100 and 16DZ1204300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guorong Chen or Dengsong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, F., Shi, L., Chen, G. et al. Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energ. Rev. 2, 149–198 (2019). https://doi.org/10.1007/s41918-018-00028-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-00028-w

Keywords

Navigation