Skip to main content

Advertisement

Log in

Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-ion hybrid capacitors (LIHCs) have drawn extensive attention in field of energy storage. However, the absence of appropriate electrode materials with rapid kinetics restricted the overall performance of the capacitors. Herein, hierarchical N, P-codoped hollow carbon nanospheres coupling with WS2 nanosheets (N, P-codoped HCNS/WS2 NSs) were fabricated for boosting lithium storage materials. Specially, the WS2 nanosheets with several layers embedded in the N, P-codoped hollow carbon nanospheres could not only enhance the conductivity of composites, but also provide abundant channels for the rapid transfer of ions. As a result, as-prepared N, P-codoped HCNS/WS2 NSs demonstrated superior rate performance and long-term cycling stability. The reversible discharge capacity of 725.2 mAh·g−1 could be preserved after 1000 cycles at a current density of 1.0 A·g−1. Furthermore, LIHCs devices were assembled by using N, P-codoped HCNS/WS2 NSs and activated carbon (AC) as the cathode and anode, which exhibited high energy density of 166.7 Wh·kg−1 and power density of 5312.4 W·kg−1. Last but not least, the capacity almost had no obvious deterioration after 6000 cycles at a high current density of 10.0 A·g−1.

Graphic abstract

摘要

混合锂离子电容器在储能领域引起了广泛关注。然而, 缺乏适合快速充放电的电极材料大大限制混合电容器的整体性能。本文通过设计合成钨基有机无机前驱体, 结合退火工艺制备得到磷氮掺杂碳空心球与WS2纳米片复合物, 并将其应用于高效锂离子储能。研究表明该复合结构表现出优异的倍率性能和循环稳定性, 在电流密度为1.0 A·g−1下循环1000圈, 放电比容量仍然保持为725.2 mAh·g−1。此外, 通过与活性炭匹配得到的锂离子电容器, 可以提供较高的能量密度(166.7 Wh·kg−1)和功率密度(5312.4 W·kg−1), 在10.0 A·g−1下经过6000个循环后容量几乎没有明显下降。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093.

    Article  Google Scholar 

  2. Kong L, Tang C, Peng HJ, Huang JQ, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1:e1007.

    Article  Google Scholar 

  3. Zhao ZJ, Zhu ZX, Bao XB, Wang F, Li SJ, Liu SJ, Yang Y. Facile construction of metal phosphides (MP, M = Co, Ni, Fe, and Cu) wrapped in three-dimensional N, P-codoped carbon skeleton toward highly efficient hydrogen evolution catalysis and lithium-ion storage. ACS Appl Mater Inter. 2021;13(8):9820.

    Article  CAS  Google Scholar 

  4. Wu CP, Xie KX, He JP, Wang QP, Ma JM, Yang S, Wang QH. SnO2 quantum dots modified N, P-codoped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021;40(1):48.

    Article  CAS  Google Scholar 

  5. Zhao ZJ, Zhu ZX, Wang F, Li SJ, Bao XB, Zhang LL, Lin SJ, Yang Y. Bimetallic carbides embedded in heteroatom-doped carbon nanotubes for efficient electrocatalytic hydrogen evolution reaction and high-performance lithium storage. Chem Eng J. 2021;415:128885.

    Article  CAS  Google Scholar 

  6. Yang Y, Luo MC, Xing Y, Wang ST, Zhang WY, Lv F, Li YJ, Zhang YL, Wang W, Guo SJ. A universal strategy for intimately coupled carbon nanosheets/mom nanocrystals (M = P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage. Adv Mater. 2018;30(18):1706085.

    Article  Google Scholar 

  7. Zhao ZJ, Zhu ZX, Zhang H, Fang W, Jiang WJ, Lin S, Yang Y. Polyurethane sponge-derived nitrogen-doped carbon-encapsulation composite for enhanced lithium-ion battery performances. Appl Surf Sci. 2020;534:147631.

    Article  CAS  Google Scholar 

  8. Yao JX, Zhang H, Zhao ZJ, Zhu ZX, Yao JL, Zheng XY, Yang Y. Melamine-assisted synthesis of porous V2O3/N, P-codoped carbon hollow nanospheres for efficient sodium-ion storage. Dalton Trans. 2021;50(11):3867.

    Article  CAS  Google Scholar 

  9. Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn-Sb-Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.

    Article  Google Scholar 

  10. Dai YQ, Li GC, Li XH, Guo HJ, Wang ZX, Yan GC, Wang JX. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Met. 2020;39(12):1364.

    Article  CAS  Google Scholar 

  11. Liu X, Elia GA, Qin BS, Zhang H, Ruschhaupt P, Fang S, Varzi A, Passerini S. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 2019;4(11):2675.

    Article  CAS  Google Scholar 

  12. Zhang ZJ, Zhao J, Qiao ZJ, Wang JM, Sun SH, Fu WX, Zhang XY, Yu ZY, Dou YH, Kang JL, Yuan D, Feng YZ, Ma JM. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2021;40(2):393.

    Article  CAS  Google Scholar 

  13. Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Alloy anodes for sodium-ion batteries. Rare Met. 2021;40(2):272.

    Article  CAS  Google Scholar 

  14. Liu Y, Li X, Zhang QH, Li WD, Xie Y, Liu HY, Shang L, Liu ZY, Chen ZM, Gu L, Tang ZY, Zhang TR, Lu SY. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum Dots. Angew Chem Int Ed. 2020;59(4):1718.

    Article  CAS  Google Scholar 

  15. Li X, Elshahawy AM, Guan C, Wang J. Metal Phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small. 2017;13(39):1701530.

    Article  Google Scholar 

  16. Li WD, Liu Y, Wu M, Feng XL, Redfern SAT, Shang Y, Yong X, Feng T, Wu KF, Liu ZY, Li BJ, Chen ZM, Tse JS, Lu SY, Yang B. Carbon quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv Mater. 2018;30(31):1800676.

    Article  Google Scholar 

  17. Song HQ, Li YH, Shang L, Tang ZY, Zhang TR, Lu SY. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy. 2020;72:104730.

    Article  CAS  Google Scholar 

  18. Huang YL, Chen W, Wee ATS. Two-dimensional magnetic transition metal chalcogenides. SmartMat. 2021;2:139.

    Article  Google Scholar 

  19. Yang W, Yang W, Kong LN, Song AL, Qin XJ, Shao GJ. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon. 2018;127:557.

    Article  CAS  Google Scholar 

  20. Li X, Sun YG, Xu X, Wang YX, Chou SL, Cao AM, Chen LB, Dou SX. Lotus rhizome-like S/N-C with embedded WS2 for superior sodium storage. J Mater Chem A. 2019;7(45):25932.

    Article  CAS  Google Scholar 

  21. Zhang XE, Zhao RF, Wu QH, Li WL, Shen C, Ni LB, Yan H, Diao GW, Chen M. Ultrathin WS2 nanosheets vertically embedded in a hollow mesoporous carbon framework: a triple-shell structure with enhanced lithium storage and electrocatalytic properties. J Mater Chem A. 2018;6(39):19004.

    Article  CAS  Google Scholar 

  22. Li PH, Yang Y, Gong S, Lv F, Wang W, Li YJ, Luo MC, Xing Y, Wang Q, Guo SJ. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 2018;12(9):2218.

    Article  Google Scholar 

  23. Wang ST, Cao FJ, Li YT, Zhang ZT, Zhou DM, Yang Y, Tang ZL. MoS2-coupled carbon nanosheets encapsulated on sodium titanate nanowires as super-durable anode material for sodium-ion batteries. Adv Sci. 2019;6(10):1900028.

    Article  Google Scholar 

  24. Song HQ, Wu M, Tang ZY, Tse JS, Yang B, Lu SY. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew Chem Int Ed. 2021;60(13):7234.

    Article  CAS  Google Scholar 

  25. Huang JD, Wei ZX, Liao JQ, Ni W, Wang CY, Ma JM. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem. 2019;33:100.

    Article  Google Scholar 

  26. Ding CX, Huang T, Tao YP, Tan DM, Zhang Y, Wang FX, Yu F, Xie QJ. Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors. J Mater Chem A. 2018;6(42):21010.

    Article  CAS  Google Scholar 

  27. Hu YZ, Lu Y, Zhao XR, Shen T, Zhao TH, Gong MX, Chen K, Lai CL, Zhang J, Xin HLL, Wang DL. Highly active N, P-codoped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020;13(9):2365.

    Article  CAS  Google Scholar 

  28. Dong YR, Zhu ZJ, Hu YJ, He GJ, Sun Y, Cheng QL, Parkin IP, Jiang H. Supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays with enhanced sodium storage capability. Nano Res. 2020;14(1):74.

    Article  Google Scholar 

  29. Wang CL, Sun LS, Zhang FF, Wang XX, Sun QJ, Cheng Y, Wang LM. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small. 2017;13(32):1701246.

    Article  Google Scholar 

  30. Su DQ, Huang M, Zhang JH, Guo XM, Chen JL, Xue YC, Yuan AH, Kong QH. High N, P-codoped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020;13(10):2862.

    Article  CAS  Google Scholar 

  31. Shi NX, Xi BJ, Huang M, Tian F, Chen WH, Li HB, Feng JK, Xiong SL. One-step construction of MoS0.74Se1.26/N, P-codoped carbon flower-like hierarchical microspheres with enhanced sodium storage. ACS Appl Mater Inter. 2019;11(47):44342.

    Article  CAS  Google Scholar 

  32. Zhao Y, Sun ZT, Yi YY, Lu C, Wang ML, Xia Z, Lian XY, Liu ZF, Sun JY. Precise synthesis of N, P-codoped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021;14(5):1413.

    Article  CAS  Google Scholar 

  33. Zhang HJ, Jia QC, Kong LB. Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Appl Surf Sci. 2020;531:147222.

    Article  CAS  Google Scholar 

  34. Byeon A, Glushenkov AM, Anasori B, Urbankowski P, Li JW, Byles BW, Blake B, Van Aken KL, Kota S, Pomerantseva E, Lee JW, Chen Y, Gogotsi Y. Lithium-ion capacitors with 2D Nb2CTx (MXene)-carbon nanotube electrodes. J Power Sources. 2016;326:686.

    Article  CAS  Google Scholar 

  35. Come J, Naguib M, Rozier P, Barsoum MW, Gogotsi Y, Taberna PL, Morcrette M, Simon P. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J Electron Mater. 2012;159(8):A1368.

    CAS  Google Scholar 

  36. Li C, Zhang X, Wang K, Sun XZ, Ma YW. Accordion-like titanium carbide (MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors. Chin Chem Lett. 2020;31(4):1009.

    Article  CAS  Google Scholar 

  37. Du HP, Yang H, Huang CS, He JJ, Liu HB, Li YL. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy. 2016;22:615.

    Article  CAS  Google Scholar 

  38. Cheng CF, Chen YM, Zou F, Liu KW, Xia YF, Huang YF, Tung WY, Krishnan MR, Vogt BD, Wang CL, Ho RM, Zhu Y. Li-ion capacitor integrated with nano-network-structured Ni/NiO/C anode and nitrogen, P-codoped carbonized metal-organic framework cathode with high power and long cyclability. ACS Appl Mater Inter. 2019;11(34):30694.

    Article  CAS  Google Scholar 

  39. Wang YC, Zhang X, Xiong PX, Yin FX, Xu YH, Wan B, Wang QZ, Wang GK, Ji PG, Gou HY. Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors: sodium rivals lithium. J Mater Chem A. 2018;6(43):21605.

    Article  CAS  Google Scholar 

  40. Ju JG, Zhang LT, Shi HS, Li ZJ, Kang WM, Cheng BW. Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor. Appl Surf Sci. 2019;484:392.

    Article  CAS  Google Scholar 

  41. Huang SJ, Yang LW, Gao M, Zhang Q, Xu GB, Liu X, Cao JX, Wei XL. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors. J Power Sources. 2019;437:226934.

    Article  CAS  Google Scholar 

  42. Cai MY, Sun XG, Nie YY, Chen W, Qiu ZW, Chen L, Liu ZH, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. NANO. 2017;12(4):143.

    Article  Google Scholar 

  43. Aref AR, Chen SW, Rajagopalan R, Randall C. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors. Carbon. 2019;152:89.

    Article  CAS  Google Scholar 

  44. Ajuria J, Redondo E, Arnaiz M, Mysyk R, Rojo T, Goikolea E. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources. 2017;359:17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51902266 and 22002003), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX2021009), the Key Research and Development Projects of Shaanxi Province (No. 2020GXLH-Z-032), the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (No. G8QT0461G), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (No. SKLSP202004). We would like to thank the Analytical and Testing Center of Northwestern Polytechnical University for TEM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Yang or Shao-Jun Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22803 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZJ., Chao, YG., Wang, F. et al. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Met. 41, 1245–1254 (2022). https://doi.org/10.1007/s12598-021-01850-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01850-w

Keywords

Navigation