Skip to main content
Log in

Investigation on halogen-doped n-type SnTe thermoelectrics

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound, despite the realization of n-type SnTe being a great challenge. Herein, Cl as a donor dopant can effectively regulate the position of Fermi level in Sn0.6Pb0.4Te matrix and successfully achieve the n-type transport behavior in SnTe. An outstanding power factor of ~ 14.7 µW·cm−1·K−2 at 300 K was obtained for Cl-doped Sn0.6Pb0.4Te sample. By combining the experimental analysis with theoretical calculations, the transport properties of n-type SnTe thermoelectrics doped with different halogen dopants (Cl, Br, and I) were then systematically investigated and estimated. The results demonstrated that Br and I had better doping efficiencies compared with Cl, which contributed to the well-optimized carrier concentrations of ~ 1.03 × 1019 and ~ 1.11 × 1019 cm−3 at 300 K, respectively. The improved n-type carrier concentrations effectively lead to the significant enhancement on the thermoelectric performance of n-type SnTe. Our study further promoted the experimental progress and deep interpretation of the transport features in n-type SnTe thermoelectrics. The present results could also be crucial for the development of n-type counterparts for SnTe-based thermoelectric devices.

摘要

尽管实现n型SnTe是一个巨大的挑战, 但最近关于n型SnTe传输性质的理论预测和实验发现已经引发了对这种简单二元化合物的广泛研究。本工作中, 以Cl作为施主掺杂剂, 通过调节Sn0.6Pb0.4Te中费米能级的位置, 在SnTe中成功实现了n型传输行为。 在300 K时, 最大功率因子在Sn0.6Pb0.4Te0.93Cl0.07中达到了~14.7 µW•cm-1•K‒2。此外, 通过结合实验分析和理论计算, 我们系统性地研究和评估了不同卤素 (Cl, Br和I) 掺杂 在 SnTe 的掺杂效率以及对 n型 SnTe 热电材料性能的影响。结果表明, 相比于 Cl, Br和I具有更高的掺杂效率, 室温载流子浓度分别达到了 ~1.03 × 1019 和 ~1.11 × 1019 cm-3。载流子浓度的提升也有效地优化了n型SnTe的热电性能。本工作促进了SnTe中的n型热电传输特性的深入理解, 这对于开发SnTe基n型热电臂是十分重要的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiao Y, Zhao LD. Seeking new, highly effective thermoelectrics. Science. 2020;367(6483):1196. https://doi.org/10.1126/science.aaz9426.

    Article  CAS  Google Scholar 

  2. Qu WW, Zhang XX, Yuan BF, Zhao LD. Homologous layered InFeO3(ZnO)m: new promising abradable seal coating materials. Rare Met. 2018;37(2):79. https://doi.org/10.1007/s12598-017-0978-6.

    Article  CAS  Google Scholar 

  3. Zhang X, Chang C, Zhou Y, Zhao LD. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials. 2017;10(2):198. https://doi.org/10.3390/ma10020198.

    Article  CAS  Google Scholar 

  4. Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao LD, He J. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv Funct Mater. 2014;24(48):7763. https://doi.org/10.1002/adfm.201402211.

    Article  CAS  Google Scholar 

  5. Wang YP, Qin BC, Wang DY, Hong T, Gao X, Zhao LD. Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Met. 2021;40(10):2819. https://doi.org/10.1007/s12598-021-01753-w.

    Article  CAS  Google Scholar 

  6. Dragoe N. Entropy driven synthesis of new materials. Mat Lab. 2022;1:220001. https://doi.org/10.54227/mlab.20220001.

    Article  Google Scholar 

  7. Chen Q, Wang X, Wu Z, Liu C, Miao L. Recent advances in SnSe-based thermoelectric materials. Chin J Rare Met. 2020;44(12):1316. https://doi.org/10.13373/j.cnki.cjrm.XY19050002.

    Article  Google Scholar 

  8. Zhang YM, Shen XC, Yan YC, Wang GW, Wang GY, Li JY, Lu X, Zhou XY. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. 2020;39(11):1256. https://doi.org/10.1007/s12598-020-01468-4.

    Article  CAS  Google Scholar 

  9. Xiao Y, Zhao LD. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 2018;3:55. https://doi.org/10.1038/s41535-018-0127-y.

    Article  CAS  Google Scholar 

  10. Hao X, Chen X, Zhou X, Zhang L, Tao J, Wang C, Wu T, Dai W. Performance optimization for PbTe-based thermoelectric materials. Front Energy Res. 2021;9: 754532. https://doi.org/10.3389/fenrg.2021.754532.

    Article  Google Scholar 

  11. Qin BC, Xiao Y, Zhou YM, Zhao LD. Thermoelectric transport properties of Pb-Sn-Te-Se system. Rare Met. 2018;37(4):343. https://doi.org/10.1007/s12598-017-0991-9.

    Article  CAS  Google Scholar 

  12. Tian BZ, Jiang XP, Jie Chen HG, Wang ZG, Tang J, Zhou DL, Yang L, Chen ZG. Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Met. 2021;41(1):86. https://doi.org/10.1007/s12598-021-01805-1.

    Article  CAS  Google Scholar 

  13. Wang WA, Li XY, Xing YF, Gu M, Fang LH, Bao YF, Fan JH. Development of sandwich joining piece to fabricate segmented half-Heusler/skutterudite thermoelectric joints. Rare Met. 2021;40(7):1966. https://doi.org/10.1007/s12598-020-01487-1.

    Article  CAS  Google Scholar 

  14. Li CW, Hellman O, Ma J, May AF, Cao HB, Chen X, Christianson AD, Ehler G, Singh DJ, Sales BC, Delaire O. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys Rev Lett. 2014;112(17):175501. https://doi.org/10.1103/PhysRevLett.112.175501.

    Article  CAS  Google Scholar 

  15. Moshwan R, Yang L, Zou J, Chen ZG. Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv Funct Mater. 2017;27(43):1703278. https://doi.org/10.1002/adfm.201703278.

    Article  CAS  Google Scholar 

  16. Zhang X, Wang D, Wu H, Yin M, Pei Y, Gong S, Huang L, Pennycook SJ, He J, Zhao LD. Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy Environ Sci. 2017;10(11):2420. https://doi.org/10.1039/c7ee02530k.

    Article  CAS  Google Scholar 

  17. Zhao CC, Xiao C. When thermoelectric materials come across with magnetism. Rare Met. 2021;40(4):752. https://doi.org/10.1007/s12598-020-01652-6.

    Article  CAS  Google Scholar 

  18. Chen Z, Guo X, Zhang F, Shi Q, Tang M, Ang R. Routes for advancing SnTe thermoelectrics. J Mater Chem A. 2020;8(33):16790. https://doi.org/10.1039/d0ta05458e.

    Article  CAS  Google Scholar 

  19. Li CW, Ma J, Cao HB, May AF, Abernathy DL, Ehlers G, Hoffmann C, Wang X, Hong T, Huq A, Gourdon O, Delaire O. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Phys Rev B. 2014;90(21): 214303. https://doi.org/10.1103/PhysRevB.90.214303.

    Article  CAS  Google Scholar 

  20. Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, Pei Y. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Adv Mater. 2017;29(17):1605887. https://doi.org/10.1002/adma.201605887.

    Article  CAS  Google Scholar 

  21. Guo F, Cui B, Liu Y, Meng X, Cao J, Zhang Y, He R, Liu W, Wu H, Pennycook SJ, Cai W, Sui J. Thermoelectric SnTe with band convergence, dense dislocations, and interstitials through Sn self-compensation and Mn alloying. Small. 2018;14(37):1802615. https://doi.org/10.1002/smll.201802615.

    Article  CAS  Google Scholar 

  22. Tan G, Zhao LD, Shi F, Doak JW, Lo SH, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc. 2014;136(19):7006. https://doi.org/10.1021/ja500860m.

    Article  CAS  Google Scholar 

  23. Zhou Z, Yang J, Jiang Q, Luo Y, Zhang D, Ren Y, He X, Xin J. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. J Mater Chem A. 2016;4(34):13171. https://doi.org/10.1039/c6ta04240f.

    Article  CAS  Google Scholar 

  24. Kihoi SK, Kim H, Jeong H, Kim H, Ryu J, Yi S, Lee HS. Thermoelectric properties of Mn, Bi, and Sb co-doped SnTe with a low lattice thermal conductivity. J Alloys Compd. 2019;806:361. https://doi.org/10.1016/j.jallcom.2019.07.220.

    Article  CAS  Google Scholar 

  25. Banik A, Vishal B, Perumal S, Datta R, Biswas K. The origin of low thermal conductivity in Sn1−xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ Sci. 2016;9(6):2011. https://doi.org/10.1039/c6ee00728g.

    Article  CAS  Google Scholar 

  26. Wang D, Zhang X, Yu Y, Xie L, Wang J, Wang G, He J, Zhou Y, Pang Q, Shao J, Zhao LD. Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties. J Alloys Compd. 2019;773:571. https://doi.org/10.1016/j.jallcom.2018.09.234.

    Article  CAS  Google Scholar 

  27. Zhou M, Gibbs ZM, Wang H, Han Y, Xin C, Li L, Snyder GJ. Optimization of thermoelectric efficiency in SnTe: the case for the light band. Phys Chem Chem Phys. 2014;16(38):20741. https://doi.org/10.1039/c4cp02091j.

    Article  CAS  Google Scholar 

  28. Banik A, Biswas K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization. J Solid State Chem. 2016;242:43. https://doi.org/10.1016/j.jssc.2016.02.012.

    Article  CAS  Google Scholar 

  29. Deng SP, Jiang XY, Chen LL, Zhang ZY, Qi N, Wu YC, Tang XF, Chen ZQ. Structural features and thermoelectric performance of Sb- and Bi-doped Cu2SnSe3 compounds. Rare Met. 2021;40(9):2474. https://doi.org/10.1007/s12598-021-01724-1.

    Article  CAS  Google Scholar 

  30. Tan G, Shi F, Hao S, Chi H, Zhao LD, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc. 2015;137(15):5100. https://doi.org/10.1021/jacs.5b00837.

    Article  CAS  Google Scholar 

  31. Guo F, Cui B, Geng H, Zhang Y, Wu H, Zhang Q, Yu B, Pennycook SJ, Cai W, Sui J. Simultaneous boost of power factor and figure-of-merit in In-Cu codoped SnTe. Small. 2019;15(36):1902493. https://doi.org/10.1002/smll.201902493.

    Article  CAS  Google Scholar 

  32. Tan XJ, Liu GQ, Xu JT, Shao HZ, Jiang J, Jiang HC. Element-selective resonant state in M-doped SnTe (M = Ga, In, and Tl). Phys Chem Chem Phys. 2016;18(30):20635. https://doi.org/10.1039/c6cp03688k.

    Article  CAS  Google Scholar 

  33. Shen XC, Zhang X, Zhang B, Wang GY, He J, Zhou XY. Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering. Rare Met. 2020;39(12):1374. https://doi.org/10.1007/s12598-020-01491-5.

    Article  CAS  Google Scholar 

  34. Orabi RARA, Mecholsky NA, Hwang J, Kim W, Rhyee JS, Wee D, Fornari M. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. Chem Mater. 2015;28(1):376. https://doi.org/10.1021/acs.chemmater.5b04365.

    Article  CAS  Google Scholar 

  35. Tan XJ, Shao HZ, He J, Liu GQ, Xu JT, Jiang J, Jiang HC. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg). Phys Chem Chem Phys. 2016;18(10):7141. https://doi.org/10.1039/c5cp07620j.

    Article  CAS  Google Scholar 

  36. He J, Xu J, Liu GQ, Shao H, Tan X, Liu Z, Xu J, Jiang H, Jiang J. Enhanced thermopower in rock-salt SnTe-CdTe from band convergence. RSC Adv. 2016;6(38):32189. https://doi.org/10.1039/c6ra02658c.

    Article  CAS  Google Scholar 

  37. Tan G, Shi F, Doak JW, Sun H, Zhao LD, Wang P, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci. 2015;8(1):267. https://doi.org/10.1039/c4ee01463d.

    Article  CAS  Google Scholar 

  38. Sarkar D, Ghosh T, Banik A, Roychowdhury S, Sanyal D, Biswas K. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics. Angew Chem Int Ed Engl. 2020;59(27):11115. https://doi.org/10.1002/anie.202003946.

    Article  CAS  Google Scholar 

  39. Zhou Z, Yang J, Jiang Q, Xin J, Li S, Wang X, Lin X, Chen R, Basit A, Chen Q. Facile route to high-performance SnTe-based thermoelectric materials: synergistic regulation of electrical and thermal transport by in situ chemical reactions. Chem Mater. 2019;31(9):3491. https://doi.org/10.1021/acs.chemmater.9b00747.

    Article  CAS  Google Scholar 

  40. He J, Tan X, Xu J, Liu GQ, Shao H, Fu Y, Wang X, Liu Z, Xu J, Jiang H, Jiang J. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. J Mater Chem A. 2015;3(39):19974. https://doi.org/10.1039/c5ta05535k.

    Article  CAS  Google Scholar 

  41. Banik A, Shenoy US, Anand S, Waghmare UV, Biswas K. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem Mater. 2015;27(2):581. https://doi.org/10.1021/cm504112m.

    Article  CAS  Google Scholar 

  42. Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, Ge B. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv Electron Mater. 2016;2(6):1600019. https://doi.org/10.1002/aelm.201600019.

    Article  CAS  Google Scholar 

  43. Banik A, Biswas K. Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1−xSex system. J Mater Chem A. 2014;2(25):9620. https://doi.org/10.1039/c4ta01333f.

    Article  CAS  Google Scholar 

  44. Guo J, Wang ZY, Zhu YK, Chen L, Feng J, Ge ZH. Synergistically enhanced thermoelectric properties of Bi2S3 bulk materials via Cu interstitial doping and BiCl3 alloying. Rare Met. 2022;41(3):931. https://doi.org/10.1007/s12598-021-01848-4.

    Article  CAS  Google Scholar 

  45. Wu D, Chen X, Zheng F, Du H, Dunin-Borkowski RE. Dislocation evolution and migration at grain boundaries in thermoelectric SnTe. ACS Appl Energy Mater. 2019;2(4):2392. https://doi.org/10.1021/acsaem.9b00061.

    Article  CAS  Google Scholar 

  46. Hwang J, Kim H, Han MK, Hong J, Shim JH, Tak JY, Lim YS, Jin Y, Kim J, Park H, Lee DK, Bahk JH, Kim SJK. Gigantic phonon-scattering cross section to enhance thermoelectric performance in bulk crystals. ACS Nano. 2019;13(7):8347. https://doi.org/10.1021/acsnano.9b03805.

    Article  CAS  Google Scholar 

  47. Hong M, Wang Y, Xu S, Shi X, Chen L, Zou J, Chen ZG. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy. 2019;60:1. https://doi.org/10.1016/j.nanoen.2019.03.031.

    Article  CAS  Google Scholar 

  48. Falkenbach O, Schmitz A, Dankwort T, Koch G, Kienle L, Mueller E, Schlecht S. Tin telluride-based nanocomposites of the type AgSnmBiTe2+m(BTST-m) as effective lead-free thermoelectric materials. Chem Mater. 2015;27(21):7296. https://doi.org/10.1021/acs.chemmater.5b02329.

    Article  CAS  Google Scholar 

  49. Guo S, Fidler AF, He K, Su D, Chen G, Lin Q, Pietryga JM, Klimov VI. Shape-controlled narrow-gap SnTe nanostructures: from nanocubes to nanorods and nanowires. J Am Chem Soc. 2015;137(48):15074. https://doi.org/10.1021/jacs.5b09490.

    Article  CAS  Google Scholar 

  50. Zou Y, Chen Z, Lin J, Zhou X, Lu W, Drennan J, Zou J. Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res. 2015;8(9):3011. https://doi.org/10.1007/s12274-015-0806-y.

    Article  CAS  Google Scholar 

  51. Zhao LD, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc. 2016;138(7):2366. https://doi.org/10.1021/jacs.5b13276.

    Article  CAS  Google Scholar 

  52. Galazka K, Xie WJ, Populoh S, Aguirre MH, Yoon S, Buettner G, Weidenkaff A. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Met. 2020;39(6):659. https://doi.org/10.1007/s12598-020-01392-7.

    Article  CAS  Google Scholar 

  53. Xu X, Cui J, Fu L, Huang Y, Yu Y, Zhou Y, Wu D, He J. Enhanced thermoelectric performance achieved in SnTe via the synergy of valence band regulation and Fermi level modulation. ACS Appl Mater Interfaces. 2021;13(42):50037. https://doi.org/10.1021/acsami.1c15595.

    Article  CAS  Google Scholar 

  54. Pang H, Qiu Y, Wang D, Qin Y, Huang R, Yang Z, Zhang X, Zhao LD. Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J Am Chem Soc. 2021;143(23):8538. https://doi.org/10.1021/jacs.1c02346.

    Article  CAS  Google Scholar 

  55. Brebrice RF. Deviations from stoichiometry and electrical properties in SnTe. J Phys Chem Solids. 1963;24:27. https://doi.org/10.1016/0022-3697(63)90038-6.

    Article  Google Scholar 

  56. Pandit A, Haleoot R, Hamad B. Structural, electronic and thermoelectric properties of Pb1−xSnxTe alloys. J Electron Mater. 2019;49(1):586. https://doi.org/10.1007/s11664-019-07715-4.

    Article  CAS  Google Scholar 

  57. Singh DJ. Thermopower of SnTe from Boltzmann transport calculations. Funct Mater Lett. 2010;3(4):223. https://doi.org/10.1142/S1793604710001299.

    Article  CAS  Google Scholar 

  58. Chen X, Parker D, Singh DJ. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci Rep. 2013;3:3168. https://doi.org/10.1038/srep03168.

    Article  Google Scholar 

  59. Xu L, Wang HQ, Zheng JC. Thermoelectric properties of PbTe, SnTe, and GeTe at high pressure: an ab initio study. J Electron Mater. 2011;40(5):641. https://doi.org/10.1007/s11664-010-1491-y.

    Article  CAS  Google Scholar 

  60. Wang N, West D, Liu J, Li J, Yan Q, Gu BL, Zhang SB, Duan W. Microscopic origin of the p-type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying. Phys Rev B. 2014;89(4): 045142. https://doi.org/10.1103/PhysRevB.89.045142.

    Article  CAS  Google Scholar 

  61. Kresse G, Furthmiiller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  62. Blochl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  CAS  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  64. Zhou Y, Li W, Wu M, Zhao LD, He J, Wei SH, Huang L. Influence of defects on the thermoelectricity in SnSe: a comprehensive theoretical study. Phys Rev B. 2018;97(24): 245202. https://doi.org/10.1103/PhysRevB.97.245202.

    Article  CAS  Google Scholar 

  65. Wei SH. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci. 2004;30(3–4):337. https://doi.org/10.1016/j.commatsci.2004.02.024.

    Article  CAS  Google Scholar 

  66. Yuan ZK, Chen S, Xie Y, Park J-S, Xiang H, Gong XG, Wei SH. Na-diffusion enhanced p-type conductivity in Cu(In, Ga)Se2: a new mechanism for efficient doping in semiconductors. Adv Energy Mater. 2016;6(24):1601191. https://doi.org/10.1002/aenm.201601191.

    Article  CAS  Google Scholar 

  67. Xia C, Jia Y, Zhang Q. First-principles electronic structure and formation energies of group V and VII impurities in the alpha-Fe2O3 alloys. J Appl Phys. 2014;116(11): 113706. https://doi.org/10.1063/1.4896224.

    Article  CAS  Google Scholar 

  68. Xiao Y, Wang D, Qin B, Wang J, Wang G, Zhao LD. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe. J Am Chem Soc. 2018;140(40):13097. https://doi.org/10.1021/jacs.8b09029.

    Article  CAS  Google Scholar 

  69. Qian X, Wu H, Wang D, Zhang Y, Wang J, Wang G, Zheng L, Pennycook SJ, Zhao LD. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy Environ Sci. 2019;12(6):1969. https://doi.org/10.1039/c8ee03386b.

    Article  CAS  Google Scholar 

  70. Ganesan N, Sivaramakrishnan V. Effect of excess tin on the electrical properties of SnTe thin films. J Mater Sci Lett. 1988;23:1237. https://doi.org/10.1007/BF01154584.

    Article  CAS  Google Scholar 

  71. Qiu Y, Jin Y, Wang D, Guan M, He W, Peng S, Liu R, Gao X, Zhao LD. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J Mater Chem A. 2019;7(46):26393. https://doi.org/10.1039/c9ta10963c.

    Article  CAS  Google Scholar 

  72. Yang YX, Wu YH, Zhang Q, Cao GS, Zhu TJ, Zhao XB. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 2020;39(8):887. https://doi.org/10.1007/s12598-020-01414-4.

    Article  CAS  Google Scholar 

  73. Qin B, Zhao LD. Carriers: the less, the faster. Mat Lab. 2022;1:220004. https://doi.org/10.54227/mlab.20220004.

    Article  Google Scholar 

  74. Pei YL, Wu H, Sui J, Li J, Berardan D, Barreteau C, Pan L, Dragoe N, Liu WS, He J, Zhao LD. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy Environ Sci. 2013;6(6):1750. https://doi.org/10.1039/c3ee40879e.

    Article  CAS  Google Scholar 

  75. Zhu H, Zhao JY, Xiao C. Improved thermoelectric performance in n-type BiTe facilitated by defect engineering. Rare Met. 2021;40(10):2829. https://doi.org/10.1007/s12598-021-01737-w.

    Article  CAS  Google Scholar 

  76. He W, Wang D, Dong JF, Qiu Y, Fu L, Feng Y, Hao Y, Wang G, Wang J, Li JF, He J, Zhao LD. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals. J Mater Chem A. 2018;6(21):10048. https://doi.org/10.1039/c8ta03150a.

    Article  CAS  Google Scholar 

  77. Chang C, Tan G, He J, Kanatzidis MG, Zhao LD. The thermoelectric properties of SnSe continue to surprise: extraordinary electron and phonon transport. Chem Mater. 2018;30(21):7355. https://doi.org/10.1021/acs.chemmater.8b03732.

    Article  CAS  Google Scholar 

  78. Chang C, Wang D, He D, He W, Zhu F, Wang G, He J, Zhao LD. Realizing high-ranged out-of-plane ZTs in n-type SnSe crystals through promoting continuous phase transition. Adv Energy Mater. 2019;9(28):1901334. https://doi.org/10.1002/aenm.201901334.

    Article  CAS  Google Scholar 

  79. Callaway J, von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev. 1960;120(4):1149. https://doi.org/10.1103/PhysRev.120.1149.

    Article  CAS  Google Scholar 

  80. Zhao M, Chang C, Xiao Y, Zhao LD. High performance of n-type (PbS)1–x–y(PbSe)x(PbTe)y thermoelectric materials. J Alloys Compd. 2018;744:769. https://doi.org/10.1016/j.jallcom.2018.02.152.

    Article  CAS  Google Scholar 

  81. Liu X, Wang D, Wu H, Wang J, Zhang Y, Wang G, Pennycook SJ, Zhao LD. Intrinsically low thermal conductivity in BiSbSe3: a promising thermoelectric material with multiple conduction bands. Adv Funct Mater. 2019;29(3):1806558. https://doi.org/10.1002/adfm.201806558.

    Article  CAS  Google Scholar 

  82. Wei TR, Tan G, Zhang X, Wu CF, Li JF, Dravid VP, Snyder GJ, Kanatzidis MG. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J Am Chem Soc. 2016;138(28):8875. https://doi.org/10.1021/jacs.6b04181.

    Article  CAS  Google Scholar 

  83. Liu HX, Zhang XY, Bu ZL, Li W, Pei YZ. Thermoelectric properties of (GeTe)1–x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. Rare Met. 2022;41(3):921. https://doi.org/10.1007/s12598-021-01847-5.

    Article  CAS  Google Scholar 

  84. Hu H, Xia K, Zhu T, Zhao X. Recent advances in Ag-based superionic thermoelectric materials. Chin J Rare Met. 2021;45(5):513. https://doi.org/10.13373/j.cnki.cjrm.XY20070024.

    Article  Google Scholar 

  85. Liu XC, Yang M. Enhanced thermoelectric performance of AgBi3S5 by antimony doping. Rare Met. 2020;39(3):289. https://doi.org/10.1007/s12598-020-01373-w.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52002042), the National Postdoctoral Program for Innovative Talents (No. BX20200028), the National Key Research and Development Program of China (No. 2018YFA0702100), China Postdoctoral Science Foundation (No. 2021M690280) and the Natural Science Foundation of Chongqing, China (No. cstc2019jcyj-msxmX0554). L.D.Z. thanks for the support from the National Science Fund for Distinguished Young Scholars (No. 51925101) and the High Performance Computing (HPC) Resources at Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Yang Wang or Li-Dong Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CR., Qin, BC., Wang, DY. et al. Investigation on halogen-doped n-type SnTe thermoelectrics. Rare Met. 41, 3803–3814 (2022). https://doi.org/10.1007/s12598-022-02076-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02076-0

Keywords

Navigation