Skip to main content
Log in

Enhanced thermoelectric performance of Bi2Se3/TiO2 composite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature. In recent years, much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties. In this work, Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate (TNBT), and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains. The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2, contributing to a significant improved power factor. In the meantime, the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles. As a consequence, a peak figure of merit (zT) of 0.41 is obtained at 525 K in Bi2Se3/15 mol% TiO2 composites, nearly 50% augment over the pristine Bi2Se3 binary compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  CAS  Google Scholar 

  2. Guan MJ, Qiu PF, Song QF, Yang J, Ren DD, Shi X, Chen LD. Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides. Rare Met. 2018;37(4):282.

    Article  CAS  Google Scholar 

  3. Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.

    Article  Google Scholar 

  4. Zhang H, Li JT, Ding FZ, Qu F, Li H, Gu HW. Combustion synthesis of ZrNiSn half-Heusler thermoelectric materials. Chin J Rare Met. 2019;43(4):337.

    Google Scholar 

  5. Liu R, Tan X, Liu YC, Ren GK, Lan JL, Zhou ZF, Nan CW, Lin YH. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 2018;37(4):259.

    Article  CAS  Google Scholar 

  6. Pei Y, Lalonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, Chen LD, Snyder JG. Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater. 2011;23(47):5674.

    Article  CAS  Google Scholar 

  7. Fu CG, Zhu TJ, Liu YT, Xie HH, Zhao XB. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ Sci. 2015;8(1):216.

    Article  CAS  Google Scholar 

  8. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang DZ, Andrew Muto, Daryoosh Vashaee, Chen XY, Liu JM, Dresselhaus Mildred S, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  CAS  Google Scholar 

  9. Ii KS, Kyu Hyoung L, Mun HA, Hyun Sik K, Sung Woo H, Jong Wook R, Yang DJ, Shin WH, Li XS, Lee YH, Snyder JG, Kim SW. Thermoelectrics dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.

    Article  Google Scholar 

  10. Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren ZF. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Appl Phys Lett. 2008;93(19):459.

    Google Scholar 

  11. Salavati-Niasari M, Bazarganipour M, Davar F. Hydrothermal preparation and characterization of based-alloy Bi2Te3 nanostructure with different morphology. J. Alloys Compd. 2010;489(2):530.

    Article  CAS  Google Scholar 

  12. Chen Z, Han G, Lei Y, Cheng L, Jin Z. Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci Mater. 2012;22(6):535.

    Article  Google Scholar 

  13. Yaprintsev M, Lyubushkin R, Soklakova O, Ivanov O. Microstructure and thermoelectric properties of Bi1.9Lu0.1Te3 compound. Rare Met. 2017;37(3):642.

    Google Scholar 

  14. Zhao LD, Dravid VP, Kanatzidis MG. The panoscopic approach to high performance thermoelectrics. Energy Environ Sci. 2014;7(1):251.

    Article  CAS  Google Scholar 

  15. Han G, Chen ZG, Drennan J, Zou J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small. 2014;10(14):2747.

    Article  CAS  Google Scholar 

  16. Heremans JP, Thrush CM, Morelli DT. Thermopower enhancement in lead telluride nanostructures. Phys Rev B. 2004;70(11):2516.

    Article  Google Scholar 

  17. Zong PA, Chen X, Zhu Y, Liu Z, Zeng Y, Chen L. Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J Mater Chem A. 2015;3(16):8643.

    Article  CAS  Google Scholar 

  18. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):1.

    Article  Google Scholar 

  19. Hong M, Chen ZG, Yang L, Han G, Zou J. Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control. Adv Electron Mater. 2015;1(6):1500025.

    Article  Google Scholar 

  20. Sun YF, Cheng H, Gao S, Liu QH, Sun ZH, Xiao C, Wu CZ, Wei SQ, Xie Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J Am Chem Soc. 2012;134(50):20294.

    Article  CAS  Google Scholar 

  21. Yuho M, Jong Wook R, Heeseung Y, Minwoo P, Il KS, Sungwoo H, Sang ML, Kyu HL, Jeong UY. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv Mater. 2013;25(10):1424.

    Article  Google Scholar 

  22. Kadel K, Kumari L, Li WZ, Provencio PP. Synthesis and thermoelectric properties of BiSe nanostructures. Nanoscale Res Lett. 2011;6(1):57.

    CAS  Google Scholar 

  23. Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012;24(46):6125.

    Article  CAS  Google Scholar 

  24. Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6(2):e88.

    Article  CAS  Google Scholar 

  25. Bahk JH, Bian Z, Shakouri A. Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys Rev B: Condens Matter. 2013;87(7):173.

    Article  Google Scholar 

  26. Sakamoto Y, Hirahara T, Miyazaki H, Kimura SI, Hasegawa S. Spectroscopic evidence of a topological quantum phase transition in ultrathin Bi2Se3 films. Phys Rev B. 2010;81(16):2.

    Article  Google Scholar 

  27. Xu ZJ, Zhu TJ, Fu CG, Liu XH, Hu LP, Zhao XB. Attaining high mid-temperature performance in (Bi, Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 2016;8(9):e302.

    Article  CAS  Google Scholar 

  28. Nunna R, Qiu P, Yin M, Chen H, Hanus R, Song Q, Zhang TS, Chou MY, Agne MT, He JQ, Snyder GJ, Shi X, Chen LD. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ Sci. 2017;10(9):1928.

    Article  CAS  Google Scholar 

  29. Shi X, Chen L, Yang J, Meisner GP. Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering. Appl Phys Lett. 2004;84(13):2301.

    Article  CAS  Google Scholar 

  30. Cederkrantz D, Farahi N, Borup KA, Iversen BB, Nygren M, Palmqvist AEC. Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles. J Appl Phys. 2012;111(2):1248.

    Article  Google Scholar 

  31. He Q, Hao Q, Chen G, Poudel B, Wang X, Wang D, Ren ZF. Thermoelectric property studies on bulk TiOx with x from 1 to 2. Appl Phys Lett. 2007;91(5):7009.

    Article  Google Scholar 

  32. Miao L, Tanemura S, Huang R, Liu CY, Huang CM, Xu G. Large seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Appl Mater Interfaces. 2010;2(8):2355.

    Article  CAS  Google Scholar 

  33. Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C, Antonietti M. Facile general route toward tunable Magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. ACS Nano. 2011;5(11):9052.

    Article  CAS  Google Scholar 

  34. Kitagawa H, Kunisada T, Yamada Y, Kubo S. Effect of boron-doping on thermoelectric properties of rutile-type titanium dioxide sintered materials. J Alloys Compd. 2010;508(2):582.

    Article  CAS  Google Scholar 

  35. Xu L, Garrett MP, Hu B. Doping effects on internally coupled Seebeck coefficient, electrical, and thermal conductivities in aluminum-doped TiO2. J Phys Chem C. 2012;116(24):13020.

    Article  CAS  Google Scholar 

  36. Vorkapic D, Matsoukas T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alk oxides. J Am Ceram Soc. 2010;81(11):2815.

    Article  Google Scholar 

  37. Xiong Z, Chen XH, Zhao XY, Bai SQ, Huang XY, Chen LD. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12. Solid State Sci. 2009;11(9):1612.

    Article  CAS  Google Scholar 

  38. Liu XH, Hu LP, Wang H, Xie HH, Jiang GY, Zhu TJ, Zhao XB. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv Energy Mater. 2013;3(9):1238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871199 and 61534001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Bing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YX., Wu, YH., Zhang, Q. et al. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 39, 887–894 (2020). https://doi.org/10.1007/s12598-020-01414-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01414-4

Keywords

Navigation