Skip to main content
Log in

Structural, Electronic and Thermoelectric Properties of Pb1−xSnxTe Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic and thermoelectric properties of Pb1−xSnxTe (x = 0, 0.25, 0.5, 0.75, 1) alloys are investigated using density functional theory and the semi-classical Boltzmann transport theory. Both PbTe and SnTe binary alloys exhibit a semiconducting behavior with narrow direct bandgaps of 0.114 eV and 0.107 eV, respectively, at the L high-symmetry point. However, the alloying of Sn over Pb in PbTe alloy shows diverse electronic properties from a zero bandgap to 0.0833 eV depending upon the Pb/Sn concentrations. The p-type of PbTe is found to have a maximum Seebeck coefficient of 343.14 μV/K at 300 K, whereas the n-type of SnTe shows a peak of 246.32 μV/K at 300 K. The p-type of PbTe and n-type of SnTe exhibit the highest power factors of 119.76 × 10−3 Wm−1 K−2 and 148.32 × 10−3 Wm−1 K−2, respectively, at 900 K among all Pb1−xSnxTe alloys. However, Pb0.5Sn0.5Te alloy also shows a reasonably significant Seebeck coefficient and power factor for both the p- and n-type dopings. The interesting thermoelectric properties of these Pb1−xSnxTe alloys show high potential towards high thermoelectric efficiency and device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Markov, X. Hu, H.-C. Liu, N. Liu, S.J. Poon, K. Esfarjani, and M. Zebarjadi, Sci. Rep. 8, 9876 (2018).

    Article  CAS  Google Scholar 

  2. H.J. Goldsmid, in Introduction to Thermoelectricity. (Springer, Berlin, 2010), pp. 23–41.

    Google Scholar 

  3. P. Pecheur and G. Toussaint, J. Phys. Chem. Solids 40, 1123 (1979).

    Article  CAS  Google Scholar 

  4. J. Eom, C.-J. Chien, and V. Chandrasekhar, Superlattices Microstruct. 25, 733 (1999).

    Article  CAS  Google Scholar 

  5. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  CAS  Google Scholar 

  6. P.B. Littlewood, J. Phys. C: Solid State Phys. 13, 4855 (1980).

    Article  CAS  Google Scholar 

  7. B.J. Kooi and B. Noheda, Science 353, 221 (2016).

    Article  CAS  Google Scholar 

  8. M.A. Franzman, C.W. Schlenker, M.E. Thompson, and R.L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010).

    Article  CAS  Google Scholar 

  9. B. Mukherjee, Y. Cai, H.R. Tan, Y.P. Feng, E.S. Tok, and C.H. Sow, A.C.S. Appl. Mater. Interfaces 5, 9594 (2013).

    Article  CAS  Google Scholar 

  10. N. Higashitarumizu, H. Kawamoto, K. Ueno, and K. Nagashio, MRS Adv. 3, 2809 (2018).

    Article  CAS  Google Scholar 

  11. G.M. Kumar, X. Fu, P. Ilanchezhiyan, S.U. Yuldashev, D.J. Lee, H.D. Cho, and T.W. Kang, A.C.S. Appl. Mater. InterfacesMater. Interfaces 9, 32142 (2017).

    Article  CAS  Google Scholar 

  12. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  13. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  14. A. Dewandre, O. Hellman, S. Bhattacharya, A.H. Romero, G.K.H. Madsen, and M.J. Verstraete, Phys. Rev. Lett. 117, 276601 (2016).

    Article  Google Scholar 

  15. T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).

    Article  CAS  Google Scholar 

  16. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).

    Article  CAS  Google Scholar 

  17. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen, and S.-H. Ji, Science 353, 274 (2016).

    Article  CAS  Google Scholar 

  18. R. Dalven, Solid State Physics (New York: Academic Press, 1973).

    Google Scholar 

  19. T.C. Harman, Science 297, 2229 (2002).

    Article  CAS  Google Scholar 

  20. J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005).

    Article  CAS  Google Scholar 

  21. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  22. C.M. Jaworski, M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, M.G. Kanatzidis, and J.P. Heremans, Phys. Rev. B 87, 045203 (2013).

    Article  CAS  Google Scholar 

  23. Y. Pei, A.D. LaLonde, H. Wang, and G.J. Snyder, Energy Environ. Sci. 5, 7963 (2012).

    Article  CAS  Google Scholar 

  24. D. Feng, Z.-H. Ge, Y.-X. Chen, J. Li, and J. He, Nanotechnology 28, 455707 (2017).

    Article  CAS  Google Scholar 

  25. L.D. Ivanova, V.G. Leontyev, L.I. Petrova, YuV Granatkina, and E.S. Avilov, Inorg. Mater. 50, 124 (2014).

    Article  CAS  Google Scholar 

  26. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  CAS  Google Scholar 

  27. Y. Gelbstein, O. Ben-Yehuda, E. Pinhas, T. Edrei, Y. Sadia, Z. Dashevsky, and M.P. Dariel, J. Electron. Mater. 38, 1478 (2009).

    Article  CAS  Google Scholar 

  28. A. Banik, U.S. Shenoy, S. Saha, U.V. Waghmare, and K. Biswas, J. Am. Chem. Soc. 138, 13068 (2016).

    Article  CAS  Google Scholar 

  29. Y. Xiao and L.-D. Zhao, Npj Quantum Mater. 3, 55 (2018).

    Article  CAS  Google Scholar 

  30. L. Xu, H.-Q. Wang, and J.-C. Zheng, J. Electron. Mater. 40, 641 (2011).

    Article  CAS  Google Scholar 

  31. M. Orihashi, Y. Noda, L.-D. Chen, T. Goto, and T. Hirai, J. Phys. Chem. Solids 61, 919 (2000).

    Article  CAS  Google Scholar 

  32. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  33. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  35. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  36. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  37. K. Hummer, A. Grüneis, and G. Kresse, Phys. Rev. B 75, 195211 (2007).

    Article  CAS  Google Scholar 

  38. Y. Zhang, X. Ke, C. Chen, J. Yang, and P.R.C. Kent, Phys. Rev. B 80, 024304 (2009).

    Article  CAS  Google Scholar 

  39. G.K.H. Madsen, J. Carrete, and M.J. Verstraete, Comput. Phys. Commun. 231, 140 (2018).

    Article  CAS  Google Scholar 

  40. A. Goyal, P. Gorai, E.S. Toberer, and V. Stevanović, NPJ Comput. Mater. 3, 42 (2017).

    Article  CAS  Google Scholar 

  41. M. Geilhufe, S.K. Nayak, S. Thomas, M. Däne, G.S. Tripathi, P. Entel, W. Hergert, and A. Ernst, Phys. Rev. B 92, 235203 (2015).

    Article  CAS  Google Scholar 

  42. A.N. Mariano and K.L. Chopra, Appl. Phys. Lett. 10, 282 (1967).

    Article  CAS  Google Scholar 

  43. R. Dalven, Infrared Phys. 9, 141 (1969).

    Article  CAS  Google Scholar 

  44. K. Hoang, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 81, 115106 (2010).

    Article  CAS  Google Scholar 

  45. P.B. Littlewood, B. Mihaila, R.K. Schulze, D.J. Safarik, J.E. Gubernatis, A. Bostwick, E. Rotenberg, C.P. Opeil, T. Durakiewicz, J.L. Smith, and J.C. Lashley, Phys. Rev. Lett. 105, 086404 (2010).

    Article  CAS  Google Scholar 

  46. O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).

    Article  CAS  Google Scholar 

  47. R.W. Godby, M. Schlüter, and L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986).

    Article  CAS  Google Scholar 

  48. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  CAS  Google Scholar 

  49. R.N. Tauber, A.A. Machonis, and I.B. Cadoff, J. Appl. Phys. 37, 4855 (1966).

    Article  CAS  Google Scholar 

  50. J.N. Zemel, J.D. Jensen, and R.B. Schoolar, Phys. Rev. 140, A330 (1965).

    Article  Google Scholar 

  51. L. Esaki and P.J. Stiles, Phys. Rev. Lett. 16, 1108 (1966).

    Article  Google Scholar 

  52. D. Parker and D.J. Singh, Phys. Rev. B 85, 125209 (2012).

    Article  CAS  Google Scholar 

  53. Y. Wang, Y.-J. Hu, B. Bocklund, S.-L. Shang, B.-C. Zhou, Z.-K. Liu, and L.-Q. Chen, Phys. Rev. B 98, 224101 (2018).

    Article  CAS  Google Scholar 

  54. C.J. Vineis, T.C. Harman, S.D. Calawa, M.P. Walsh, R.E. Reeder, R. Singh, and A. Shakouri, Phys. Rev. B 77, 235202 (2008).

    Article  CAS  Google Scholar 

  55. Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou, Phys. Rev. B 76, 155127 (2007).

    Article  CAS  Google Scholar 

  56. E.M.J. Hedegaard, A.A.H. Mamakhel, H. Reardon, and B.B. Iversen, Chem. Mater. 30, 280 (2018).

    Article  CAS  Google Scholar 

  57. Y. Gelbstein, J. Appl. Phys. 105, 023713 (2009).

    Article  CAS  Google Scholar 

  58. A.J. Crocker and L.M. Rogers, Br. J. Appl. Phys. 18, 563 (1967).

    Article  CAS  Google Scholar 

  59. J.R. Sootsman, H. Kong, C. Uher, J.J. D’Angelo, C.-I. Wu, T.P. Hogan, T. Caillat, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Arkansas NASA EPSCOR Research Infrastructure Development (RID) grant number 002276-00001A. The calculations were performed at the Arkansas High Performance Computing Center at the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhiyan Pandit.

Ethics declarations

Conflict of interest

The author confirms that there is no conflict of interest with any other party regarding the material discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, A., Haleoot, R. & Hamad, B. Structural, Electronic and Thermoelectric Properties of Pb1−xSnxTe Alloys. J. Electron. Mater. 49, 586–592 (2020). https://doi.org/10.1007/s11664-019-07715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07715-4

Keywords

Navigation