Skip to main content

Advertisement

Log in

CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (KIBs) are attracting tremendous attention due to the abundant potassium resources and their low price and high safety. However, the main problem faced by KIBs is the lack of high-capacity and high-stability materials for the intercalation/deintercalation of large-sized K ions. Graphite, alloying-dealloying materials, transition metal chalcogenides, etc. have been reported as KIBs anodes; however, neither the capacity nor the stability is satisfactory. In this work, CoS/N-doped carbon core/shell nanocrystals (CSNCs) were synthesized as a superior anode for boosting the performance in the aspects of capacity, rate performance, and cycling stability. This CSNCs feature with small-sized CoS of 20–30 nm as the core and N-doped amorphous carbon as the shell. The small-sized particles can buffer the volume change due to the reduction of stress in particle dimensions after the intercalation of alkali ions. The flexible carbon shell can overcome the agglomeration of small particles and meanwhile confine the active CoS particles in case of crack and pulverization after large volume expansion. As a consequence, the CSNCs exhibit a high capacity of 303 mAh g−1 at the current density of 0.2 A g−1 after 150 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510

    Article  CAS  PubMed  Google Scholar 

  2. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328

    Article  CAS  Google Scholar 

  3. Wang W, Hu L, Ge J, Hu Z, Sun H, Sun H, Zhang H, Zhu H, Jiao S (2014) In situ self-assembled FeWO4/graphene mesoporous composites for Li-ion and Na-ion batteries. Chem Mater 26(12):3721–3730

    Article  CAS  Google Scholar 

  4. Wang F, Fan X, Gao T, Sun W, Ma Z, Yang C, Han F, Xu K, Wang C (2017) High-voltage aqueous magnesium ion batteries. ACS Central Sci 3(10):1121–1128

    Article  CAS  Google Scholar 

  5. Zhao J, Yang J, Sun P, Xu Y (2018) Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem Commun 86:34–37

    Article  CAS  Google Scholar 

  6. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911

    Article  CAS  Google Scholar 

  7. Wang W, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang X, Guo S (2017) Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater 8:1701648

    Article  CAS  Google Scholar 

  8. Zhang W, Mao J, Li S, Chen Z, Guo Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 139(9):3316–3319

    Article  CAS  PubMed  Google Scholar 

  9. Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175

    Article  CAS  Google Scholar 

  10. Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L (2015) Potassium ion batteries with graphitic materials. Nano Lett 15(11):7671–7677

    Article  CAS  PubMed  Google Scholar 

  11. Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137(36):11566–11569

    Article  CAS  PubMed  Google Scholar 

  12. Sultana I, Rahman MM, Chen Y, Glushenkov AM (2018) Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 28(5):1703857

    Article  CAS  Google Scholar 

  13. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM (2017) High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 5(45):23506–23512

    Article  CAS  Google Scholar 

  14. Sultana I, Ramireddy T, Rahman MM, Chen Y (2016) Tin-based composite anodes for potassium-ion batteries. Chem Commun 52(59):9279–9282

    Article  CAS  Google Scholar 

  15. McCulloch WD, Ren X, Yu M, Huang Z, Wu Y (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 7(47):26158–26166

    Article  CAS  PubMed  Google Scholar 

  16. Gao H, Zhou T, Zheng Y, Zhang Q, Liu Y, Chen J, Liu H, Guo Z (2017) CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv Funct Mater 27(43):1702634

    Article  CAS  Google Scholar 

  17. Lakshmi V, Chen Y, Mikhaylov AA, Medvedev AG, Sultana I, Rahman MM, Lev O, Prikhodchenko PV, Glushenkov AM (2017) Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun 53(59):8272–8275

    Article  CAS  Google Scholar 

  18. Lu Y, Chen J (2017) Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci China Chem 60(12):1533–1539

    Article  CAS  Google Scholar 

  19. Yu XY, Hu H, Wang Y, Chen H, Lou XWD (2015) Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed 54(25):7395–7398

    Article  CAS  Google Scholar 

  20. Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XWD (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed 53(47):12803–12807

    Article  CAS  Google Scholar 

  21. Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90

    Article  CAS  Google Scholar 

  22. Hong R, Li J, Chen L, Liu D, Li H, Zheng Y, Ding J (2009) Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189(3):426–432

    Article  CAS  Google Scholar 

  23. Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo S, Yang H (2018) Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater 1800171

  24. Barber M, Connor J, Derrick L, Hall M, Hillier I (1973) High energy photoelectron spectroscopy of transition metal complexes. J Chem Soc 69:559–562

    CAS  Google Scholar 

  25. Liu Q, Zhang J (2013) A general and controllable synthesis of ComSn (Co9S8, Co3S4, and Co1-xS) hierarchical microspheres with homogeneous phases. CrystEngComm 15(25):5087–5092

    Article  CAS  Google Scholar 

  26. Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6(8):7016–7025

    Article  CAS  PubMed  Google Scholar 

  27. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Zhou Z, Wang L (2008) CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. J Chem Phys 129(10):104703

    Article  CAS  PubMed  Google Scholar 

  29. Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J, Xiong S (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30(4):1700104

    Article  CAS  Google Scholar 

  31. Cao L, Xu F, Liang YY, Li HL (2004) Preparation of the novel nanocomposite Co (OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv Mater 16(20):1853–1857

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (21373072) and the China Postdoctoral Science Foundation (2016M600013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunzhi Gao or Wei (Alex) Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Hu, J., Qian, C. et al. CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. J Solid State Electrochem 23, 27–32 (2019). https://doi.org/10.1007/s10008-018-4081-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4081-1

Keywords

Navigation