Skip to main content

Advertisement

Log in

Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the depletion of fossil resources and the gradual intensification of environmental pollution, green and sustainable electrochemical devices have aroused intensive attraction. The supercapacitor, demonstrating fast charging rate, high power densities, and long cycling life, has great application prospects in high power output and backup power supply. Herein, an ultralight and robust MXene/carbon nanotube aerogel is constructed by facile directional freezing and subsequent freeze-drying. Benefiting from the strongly π-π interactions between MXene nanosheets and carbon nanotube, the assembled MXene/carbon nanotube composite aerogel exhibits abundant pore structures, superior conductivity, and good mechanical properties. The electrical conductivity of MXene/carbon nanotube aerogel is up to 1600 S m−1. The MXene/carbon nanotube aerogel can be subjected to 70% compressive strain and retain 85% initial strain over 1000 compress-release cycles. The as-prepared all-solid-state supercapacitor with MXene/carbon nanotube aerogel shows outstanding electrochemical performance (410.7 mF cm−2 at the current density of 0.8 mA cm−2). The supercapacitor is flexible and can be bent from 0 to 90° as the cyclic voltammetry curves are almost consistent. Furthermore, the LED can be lighted by four devices in series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2022) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74. https://doi.org/10.30919/es8d588

    Article  CAS  Google Scholar 

  2. Li W, Wang G, Sui W, Xu T, Li Z, Parvez A M, Si C (2022). Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819-827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  3. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  4. Ding Z, Tian Z, Ji X, Dai H, Si C (2022) Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation. Adv Compos Hybrid Mater 5:2138–2153. https://doi.org/10.1007/s42114-022-00517-z

    Article  CAS  Google Scholar 

  5. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  6. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.0137

    Article  Google Scholar 

  7. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020). Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustainable Chem Eng 8:7536-7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  8. Xu T, Yang D, Liu Y, Zhang S, Zhang M, Zhao T, Li X, Yu Z-Z (2020) Hierarchical transition metal oxide arrays grown on graphene-based fibers with enhanced interface by thin layer of carbon toward solid-state asymmetric supercapacitors. ChemElectroChem 7:1860. https://doi.org/10.1002/celc.201902144

    Article  CAS  Google Scholar 

  9. Yang S, Qu K, Huang Z (2022) Optimizing hierarchical porous carbon from biomass waste for high-performance supercapacitors. ES Food Agrofor 10:39–50. https://doi.org/10.30919/esfaf803

    Article  CAS  Google Scholar 

  10. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  11. Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200. https://doi.org/10.1007/s10853-020-05157-6

    Article  CAS  Google Scholar 

  12. Liu L, Niu Z, Chen J (2016) Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 45:4340–4363. https://doi.org/10.1039/C6CS00041J

    Article  CAS  Google Scholar 

  13. Liu S, Du H, Liu K, Ma M-G, Kwon Y-E, Si C, Ji X-X, Choi S-E, Zhang X (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4:1367–1383. https://doi.org/10.1007/s42114-021-00344-8

    Article  CAS  Google Scholar 

  14. Liang Y, Wei Z, Zhang X, Wang R (2022) Fabrication of vanadium oxide@polypyyrole (V2O5@PPy) core-shell nanofiber electrode for supercapacitor. ES Energy Environ 18:101–110. https://doi.org/10.30919/esee8c783

    Article  CAS  Google Scholar 

  15. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924. https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  16. Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81. https://doi.org/10.1016/j.jpowsour.2016.04.004

    Article  CAS  Google Scholar 

  17. Sheng K, Bai H, Sun Y, Li C, Shi G (2011) Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer 52:5567–5572. https://doi.org/10.1016/j.polymer.2011.10.001

    Article  CAS  Google Scholar 

  18. Shown I, Ganguly A, Chen L-C, Chen K-H (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26. https://doi.org/10.1002/ese3.50

    Article  CAS  Google Scholar 

  19. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  20. Zhou Y, Maleski K, Anasori B, Thostenson JO, Pang Y, Feng Y, Zeng K, Parker CB, Zauscher S, Gogotsi Y, Glass JT, Cao C (2020) Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 3:3576–3586. https://doi.org/10.1021/acsnano.9b10066

    Article  CAS  Google Scholar 

  21. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264. https://doi.org/10.1002/adfm.201701264

    Article  CAS  Google Scholar 

  22. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M, Si C (2021). Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740

    Article  CAS  Google Scholar 

  23. Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y (2019) Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A 7:269–277. https://doi.org/10.1039/C8TA09810G

    Article  CAS  Google Scholar 

  24. Su T, Liu N, Gao Y, Lei D, Wang L, Zhang Q, Su J, Zhang Z (2021) MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87:106151. https://doi.org/10.1016/j.nanoen.2021.106151

    Article  CAS  Google Scholar 

  25. Liao L, Zhang A, Zheng K, Liu R, Cheng Y, Wang L, Li A, Liu J (2021) Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors. ACS Appl Mater Interfaces 13:28222–28230. https://doi.org/10.1021/acsami.1c05904

    Article  CAS  Google Scholar 

  26. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15:98. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  27. Liu X, Liu Y, Dong S, Zhang X, Hou S (2022) Synthesis of ultra-high specific surface area aerogels with nitrogen-enriched Ti3C2Tx nanosheets as high-performance supercapacitor electrodes. J Mater Chem C 10:14929–14938. https://doi.org/10.1039/D2TC01987F

    Article  CAS  Google Scholar 

  28. Dai Y, Wu X, Liu Z, Zhang H-B, Yu Z-Z (2020) Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos B 200:108263. https://doi.org/10.1016/j.compositesb.2020.108263

    Article  CAS  Google Scholar 

  29. Wu X, Han B, Zhang H-B, Xie X, Tu T, Zhang Y, Dai Y, Yang R, Yu Z-Z (2020) Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem Eng J 381:122622. https://doi.org/10.1016/j.cej.2019.122622

    Article  CAS  Google Scholar 

  30. Liu J, Zhang H-B, Sun R, Liu Y, Liu Z, Zhou A, Yu Z-Z (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29:1702367. https://doi.org/10.1002/adma.201702367

    Article  CAS  Google Scholar 

  31. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23:9723–9746. https://doi.org/10.1039/D1GC02841C

    Article  CAS  Google Scholar 

  32. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5:1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  33. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  34. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  35. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  36. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization and applications. Nano Micro Lett. 14:104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  37. Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 4:3209–3216. https://doi.org/10.1021/acsnano.7b06909

    Article  CAS  Google Scholar 

  38. Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C (2017) MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A 5:22113–22119. https://doi.org/10.1039/C7TA07999K

    Article  CAS  Google Scholar 

  39. Radha N, Kanakaraj A, Manohar H, Nidhi M, Dibyendu M, Sanna K, Debasis G (2019) Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel. Appl Surf Sci 481:892–899. https://doi.org/10.1016/j.apsusc.2019.03.086

    Article  CAS  Google Scholar 

  40. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14:14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  Google Scholar 

  41. Ma C, Yuan Q, Du H, Ma M-G, Si C, Wan P (2020) Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl Mater Interfaces 12:34226–34234. https://doi.org/10.1021/acsami.0c10750

    Article  CAS  Google Scholar 

  42. Xu T, Yang D, Zhang S, Zhang M, Zhao T, Yu Z-Z (2021) Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/pedot-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 171:201–210. https://doi.org/10.1016/j.carbon.2020.08.071

    Article  CAS  Google Scholar 

  43. Sambyal P, Iqbal A, Hong J, Kim H, Kim M-K, Hong S, Han M, Gogotsi Y, Koo C (2019) Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl Mater Interfaces 11:38046–38054. https://doi.org/10.1021/acsami.9b12550

    Article  CAS  Google Scholar 

  44. Wang X, Luo D, Wang J, Sun Z, Cui G, Chen Y, Wang T, Zheng L, Zhao Y, Shui L, Zhou G, Kempa K, Zhang Y, Chen Z (2021) Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew Chem Int Ed 60:2371–2378. https://doi.org/10.1002/anie.202011493

    Article  CAS  Google Scholar 

  45. Liu W, Zhang S, Liu K, Yang H, Lin Q, Xu T, Song X, Du H, Bai L, Yao S, Si C (2023). Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J Clean Prod 384:135582. https://doi.org/10.1016/j.jclepro.2022.135582

    Article  CAS  Google Scholar 

  46. Yan P, Zhang R, Jia J, Wu C, Zhou A, Xu J, Zhang X (2015) Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources 284:38–43. https://doi.org/10.1016/j.jpowsour.2015.03.017

    Article  CAS  Google Scholar 

  47. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2:462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  48. Deng Z, Tang P, Wu X, Zhang H-B, Yu Z-Z (2021) Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl Mater Interfaces 13:20539–20547. https://doi.org/10.1021/acsami.1c02059

    Article  CAS  Google Scholar 

  49. Zhang M, Wang X, Yang D, Zhao T, Qu J, Yu Z-Z (2023) Hierarchical aerogels with hollow Co3O4 nanoparticles and graphitized carbon vesicles embedded in multi-channel carbon nanofibers for high-performance asymmetric supercapacitors. Chem Eng J 451:138434. https://doi.org/10.1016/j.cej.2022.138434

    Article  CAS  Google Scholar 

  50. Qin L, Yang D, Zhang M, Zhao T, Luo Z, Yu Z-Z (2021) Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J Colloid Interface Sci 589:264–274. https://doi.org/10.1016/j.jcis.2020.12.102

    Article  CAS  Google Scholar 

  51. Lai C, Guo Y, Zhao H, Song H, Qu X, Huang M, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574. https://doi.org/10.1007/s42114-022-00532-0

    Article  CAS  Google Scholar 

  52. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  53. Xu T, Yang D, Fan Z, Li X, Liu Y, Guo C, Zhang M, Yu Z-Z (2019) Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 152:134–143. https://doi.org/10.1016/j.carbon.2019.06.005

    Article  CAS  Google Scholar 

  54. Liu Y, Wang D, Zhang C, Zhao Y, Ma P, Dong W, Huang Y, Liu T (2022) Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv Fiber Mater 4:820–831. https://doi.org/10.1007/s42765-022-00140-z

    Article  CAS  Google Scholar 

  55. Zhang P, Zhu Q, Soomro RA, He S, Sun N, Qiao N, Xu B (2020) In situ ice template approach to fabricate 3D flexible mxene film-based electrode for high performance supercapacitors. Adv Funct Mater 30:2000922. https://doi.org/10.1002/adfm.202000922

    Article  CAS  Google Scholar 

  56. Zhao Y, Liu F, Zhao Z, Bai P, Ma Y, Alhadhrami A, Mersal GAM, Lin Z, Ibrahim MM, El-Bahy ZM (2022) Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5:1516–1526. https://doi.org/10.1007/s42114-022-00488-1

    Article  CAS  Google Scholar 

  57. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547. https://doi.org/10.1007/s42114-022-00430-5

    Article  CAS  Google Scholar 

  58. Li G, Wang L, Lei X, Peng Z, Wan T, Maganti S, Huang M, Murugadoss V, Seok I, Jiang Q, Cui D, Alhadhrami A, Ibrahim MM, Wei H (2022) Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5:853–863. https://doi.org/10.1007/s42114-022-00501-7

    Article  CAS  Google Scholar 

  59. Pathak M, Sekhar C (2022) Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv Compos Hybrid Mater 5:1404–1422. https://doi.org/10.1007/s42114-022-00466-7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32071720) and State Key Laboratory of Pulp and Paper Engineering (202204). 

Author information

Authors and Affiliations

Authors

Contributions

Ting Xu, Yaxuan Wang, and Kun Liu contributed equally to this work. Ting Xu designed the research. Yaxuan Wang performed the experiments and data analysis. Kun Liu performed the experiments. Qingshuang Zhao sorted the data and figures. Qidi Liang carried out the data analysis. Meng Zhang discussed the results. Chuanling Si supervised the manuscript. All authors have given approval for the final version of the manuscript.

Corresponding author

Correspondence to Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 532 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Wang, Y., Liu, K. et al. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6, 108 (2023). https://doi.org/10.1007/s42114-023-00675-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00675-8

Keywords

Navigation