Skip to main content

Advertisement

Log in

Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) ultra-tiny Fe2O3 nanoparticles/graphene hydrogels were prepared using a facile and efficient solvothermal reaction, by which the phase of iron oxide, particle size and the morphology of hydrogels can be precisely controlled by simply adjusting the solvothermal reaction time. Accordingly, the effect of the microstructures of hydrogels on electrochemical performance was systematically studied. It was found that Fe2O3/rGO-50 hydrogels (with a solvothermal reaction time of 50 min) possessed a desirable crystallinity, suitable particle size, decent porous structure, large specific surface area and high electrical conductivity, thus exhibiting a superior electrochemical performance as binder-free anode of supercapacitors: a large potential range of 1.15 V, an ultrahigh specific capacitance of 1090 F·g−1 at a current density of 2 A·g−1 and excellent rate capability (531 F·g−1 at 10 A·g−1). The rational design and systematic research of electrode materials will provide new lights for the preparation of advanced electrochemical energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang SW, Yin BS, Liu XX, Gu DM, Gong H, Wang ZB. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy. 2019;59:41.

    Article  CAS  Google Scholar 

  2. Ning WW, Chen LB, Wei WF, Chen YJ, Zhang XY. NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met. 2020;39(9):1034.

    Article  CAS  Google Scholar 

  3. Jiao Y, Hong WZ, Li PY, Wang LX, Chen G. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Cataly B-Environ. 2019;244:732.

    Article  CAS  Google Scholar 

  4. Chen YX, Jing C, Fu X, Shen M, Cao T, Huo WC, Liu XY, Yao HC, Zhang YX, Yao KX. In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl Surf Sci. 2020. https://doi.org/10.1016/j.apsusc.2019.144123.

    Article  Google Scholar 

  5. Li SM, Yang K, Ya P, Ma KR, Zhang Z, Huang Q. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci. 2020. https://doi.org/10.1016/j.apsusc.2019.144090.

    Article  Google Scholar 

  6. Zhang Y, Park SJ. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon. 2017;122:287.

    Article  CAS  Google Scholar 

  7. Ma Y, Hou CP, Zhang HP, Zhang QY, Liu H, Wu SD, Guo ZH. Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim Acta. 2019;315:114.

    Article  CAS  Google Scholar 

  8. Zhang DB, Kong XG, Zhang FZ, Lei XD. Electric-Field-Assisted enhanced electron transfer to boost supercapacitor negative electrode performance for a fabricated Fe7S8/alpha-FeOOH nano-heterostructure. Adv Electron Mater. 2020;6(2):1900953.

    Article  CAS  Google Scholar 

  9. Feng X, Ning J, Wang D, Zhang JC, Dong JG, Zhang C, Shen X, Hao Y. All-solid-state planner micro-supercapacitor based on graphene/NiOOH/Ni(OH)2 via mask-free patterning strategy. J Power Sources. 2019;418:130.

    Article  CAS  Google Scholar 

  10. Tian YD, Hu X, Wang YH, Li C, Wu XL. Fe2O3 nanoparticles decorated on graphene-carbon nanotubes conductive networks for boosting the energy density of all-solid state asymmetric supercapacitor. Acs Sustain Chem Eng. 2019;7(10):9211.

    Article  CAS  Google Scholar 

  11. Zeng YX, Yu MH, Meng Y, Fang PP, Lu XH, Tong YX. Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater. 2016;6(24):1601053.

    Article  CAS  Google Scholar 

  12. Liang HF, Xia C, Emwas AH, Anjum DH, Miao XH, Alshareef HN. Phosphine plasma activation of alpha-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy. 2018;49:155.

    Article  CAS  Google Scholar 

  13. Zhang SL, Fan QN, Liu Y, Xi SB, Liu XF, Wu ZB, Hao JN, Pang WK, Zhou TF, Guo ZP. Dehydration-triggered ionic channel engineering in potassium niobate for Li/K-ion storage. Adv Mater. 2020;32(22):2000380.

    Article  CAS  Google Scholar 

  14. Zheng Y, Zhou TF, Zhao XD, Pang WK, Gao H, Li S, Zhou Z, Liu HK, Guo ZP. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv Mater. 2017;29(26):1700396.

    Article  CAS  Google Scholar 

  15. Zhang Y, Hu YX, Wang ZL, Lin TG, Zhu XB, Luo B, Hu H, Xing W, Yan ZF, Wang LZ. Lithiation-induced vacancy engineering of Co3O4 with improved Faradic reactivity for high-performance supercapacitor. Adv Func Mater. 2020;30(39):2004172.

    Article  CAS  Google Scholar 

  16. Li T, Qin AQ, Yang LL, Chen J, Wang QF, Zhang DH, Yang HX. In situ grown Fe2O3 single crystallites on reduced graphene oxide nanosheets as high performance conversion anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2017;9(23):19900.

    Article  CAS  Google Scholar 

  17. Yang ZK, Qiu AD, Ma J, Chen MQ. Conducting alpha-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Compos Sci Technol. 2018;156:231.

    Article  CAS  Google Scholar 

  18. Li M, Li XY, Li ZZ, Wu YH. Hierarchical Nanosheet-Built CoNi2S4 Nanotubes coupled with carbon-encapsulated carbon nanotubes@Fe2O3 composites toward high-performance aqueous hybrid supercapacitor devices (Retraction of Vol 10, Pg 34254, 2018). ACS Appl Mater Interfaces. 2019;11(32):29476.

    Article  CAS  Google Scholar 

  19. Wang MY, Huang Y, Zhu YD, Yu M, Qin XL, Zhang HM. Core-shell Mn3O4 nanorods with porous Fe2O3 layer supported on graphene conductive nanosheets for high-performance lithium storage application. Composites Part B-Engineering. 2019;167:668.

    Article  CAS  Google Scholar 

  20. Han T, Wei Y, Jin XZ, Yu SK, Shang RR, Hang DL. Facile assembly of alpha-Fe2O3 nanorings@reduced graphene oxide composites with high lithium storage performance. J Electroanal Chem. 2019;838:163.

    Article  CAS  Google Scholar 

  21. Zhang YT, Zhang KB, Jia KL, Liu GY, Ren SZ, Li KK, Long XY, Li M, Qiu JS. Preparation of coal-based graphene quantum dots/alpha-Fe2O3 nanocomposites and their lithium-ion storage properties. Fuel. 2019;241:646.

    Article  CAS  Google Scholar 

  22. Quan HY, Cheng BC, Xiao YH, Lei SJ. One-pot synthesis of alpha-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem Eng J. 2016;286:165.

    Article  CAS  Google Scholar 

  23. Zhang X, Jiang JT, Chen Y, Cheng K, Yang F, Yan J, Zhu K, Ye K, Wang GL, Zhou LM, Cao DX. A flexible and high voltage symmetric supercapacitor based on hybrid configuration of cobalt hexacyanoferrate/reduced graphene oxide hydrogels. Chem Eng J. 2018;335:321.

    Article  CAS  Google Scholar 

  24. Zhang Y, Wen GW, Gao P, Bi SF, Tang XF, Wang D. High-performance supercapacitor of macroscopic graphene hydrogels by partial reduction and nitrogen doping of graphene oxide. Electrochim Acta. 2016;221:167.

    Article  CAS  Google Scholar 

  25. Xu H, Liu J, Chen Y, Li CL, Tang J, Li Q. Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J Mater Sci Mater Electron. 2017;28(14):10674.

    Article  CAS  Google Scholar 

  26. Wu DL, Liu PG, Wang T, Chen XX, Yang L, Jia DZ. Amino acid-assisted synthesis of Fe2O3/nitrogen doped graphene hydrogels as high performance electrode material. Electrochim Acta. 1850;2018:283.

    Google Scholar 

  27. Wang HW, Xu ZJ, Yi H, Wei HG, Guo ZH, Wang XF. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy. 2014;7:86.

    Article  CAS  Google Scholar 

  28. Wang Y, Zhang MM, Pan DH, Li Y, Ma TJ, Xie JM. Nitrogen/sulfur co-doped graphene networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor performance. Electrochim Acta. 2018;266:242.

    Article  CAS  Google Scholar 

  29. Gao Y, Wu DL, Wang T, Jia DZ, Xia W, Lv Y, Cao YL, Tan YY, Liu PG. One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochim Acta. 2016;191:275.

    Article  CAS  Google Scholar 

  30. Gholipour-Ranjbar H, Ganjali MR, Norouzi P, Naderi HR. Synthesis of cross-linked graphene aerogel/Fe2O3 nanocomposite with enhanced supercapacitive performance. Ceram Int. 2016;42(10):12097.

    Article  CAS  Google Scholar 

  31. Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR, Kashani H. Synthesis of Ni-Co-Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim Acta. 2019;317:83.

    Article  CAS  Google Scholar 

  32. Meng JK, Fu L, Liu YS, Zheng GP, Zheng XC, Guan XX, Zhang JM. Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed alpha-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochim Acta. 2017;224:40.

    Article  CAS  Google Scholar 

  33. Tiya-Djowe A, Laminsi S, Noupeyi GL, Gaigneaux EM. Non-thermal plasma synthesis of sea-urchin like alpha-FeOOH for the catalytic oxidation of orange II in aqueous solution. Appl Catal B-Environ. 2015;176:99.

    Article  CAS  Google Scholar 

  34. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  CAS  Google Scholar 

  35. Cho S, Patil B, Yu S, Ahn S, Hwang J, Park C, Do K, Ahn H. Flexible, Swiss roll, fiber-shaped, asymmetric supercapacitor using MnO2 and Fe2O3 on carbon fibers. Electrochim Acta. 2018;269:499.

    Article  CAS  Google Scholar 

  36. Gopi CVVM, Somasekha A, Reddy AE, Kim SK, Kim HJ. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials. Appl Surf Sci. 2018;435:462.

    Article  CAS  Google Scholar 

  37. Rudra S, Nayak AK, Koley S, Chakraborty R, Maji PK, Pradhan M. Redox-mediated shape transformation of Fe3O4 nanoflakes to chemically stable Au-Fe2O3 composite nanorods for a high-performance asymmetric solid-state supercapacitor device. Acs Sustain Chem Eng. 2019;7(1):724.

    Article  CAS  Google Scholar 

  38. Faraji S, Ani FN. The development supercapacitor from activated carbon by electroless plating-a review. Renew Sustain Energy Rev. 2015;42:823.

    Article  CAS  Google Scholar 

  39. Wang RH, Xu CH, Du M, Sun J, Gao L, Zhang P, Yao HL, Lin CC. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Small. 2014;10(11):2260.

    Article  CAS  Google Scholar 

  40. Chen YW, Guo Z, Jian BQ, Zheng C, Zhang HY. N-doped modified graphene/Fe2O3 nanocomposites as high-performance anode material for sodium ion storage. Nanomaterials. 2019;9(12):1770.

    Article  CAS  Google Scholar 

  41. Shen YX, Zhang HB, Zhang HK, Ren WJ, Dasari A, Tang GS, Yu ZZ. Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon. 2013;56:132.

    Article  CAS  Google Scholar 

  42. Zhou D, Zhang TL, Han BH. One-step solvothermal synthesis of an iron oxide-graphene magnetic hybrid material with high porosity. Microporous Mesoporous Mater. 2013;165:234.

    Article  CAS  Google Scholar 

  43. Liu PG, Wu DL, Gao Y, Wang T, Tan YY, Jia DZ. Reduced graphene oxide-coated mulberry-shaped alpha-Fe2O3 nanoparticles composite as high performance electrode material for supercapacitors. J Alloy Compd. 2018;738:89.

    Article  CAS  Google Scholar 

  44. Yun XR, Li JY, Chen XH, Chen H, Xiao L, Xiang KX, Chen WH, Liao HY, Zhu YR. Porous Fe2O3 modified by nitrogen-doped carbon quantum dots/reduced graphene oxide composite aerogel as a high-capacity and high-rate anode material for alkaline aqueous batteries. ACS Appl Mater Interfaces. 2019;11(40):36970.

    Article  CAS  Google Scholar 

  45. Jiang TC, Bu FX, Feng XX, Shakir I, Hao GL, Xu YX. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano. 2017;11(5):5140.

    Article  CAS  Google Scholar 

  46. Jiang H, Niu H, Yang X, Sun ZQ, Li FZ, Wang Q, Qu FY. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors. Chem European J. 2018;24(42):10683.

    Article  CAS  Google Scholar 

  47. Li J, Wang YW, Xu WN, Wang Y, Zhang B, Luo S, Zhou XY, Zhang CL, Gu X, Hu CG. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy. 2019;57:379.

    Article  CAS  Google Scholar 

  48. Liu L, Lang JW, Zhang P, Hu B, Yan XB. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl Mater Interfaces. 2016;8(14):9335.

    Article  CAS  Google Scholar 

  49. Zhang YF, Gao W, Zuo LZ, Zhang LS, Huang YP, Lu HY, Fan W, Liu TX. In situ growth of Fe2O3 nanoparticles on highly porous graphene/polyimide-based carbon aerogel nanocomposites for effectively selective detection of dopamine. Adv Mater Interfaces. 2016;3(15):1600137.

    Article  CAS  Google Scholar 

  50. Li WY, Yang F, Rui YC, Tang BHJ. Strong covalent interaction Fe2O3/nitrogen-doped porous carbon fiber hybrids as free-standing anodes for lithium-ion batteries. J Mater Sci. 2019;54(8):6500.

    Article  CAS  Google Scholar 

  51. Li D, Zhou JS, Chen XH, Song HH. Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery. ACS Appl Mater Interfaces. 2016;8(45):30899.

    Article  CAS  Google Scholar 

  52. Liu ZM, Zhang HY, Yang Q, Chen YW. Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim Acta. 2018;287:149.

    Article  CAS  Google Scholar 

  53. Yang SH, Song XF, Zhang P, Sun J, Gao L. Self-assembled alpha-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small. 2014;10(11):2270.

    Article  CAS  Google Scholar 

  54. Patil B, Ahn S, Yu S, Song H, Jeong Y, Kim JH, Ahn H. Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon. 2018;134:366.

    Article  CAS  Google Scholar 

  55. Wang RH, Xu CH, Lee JM. High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy. 2016;19:210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21603019, 51772034 and 12075224), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201807SIC) and The Fundamental Research Funds for the Central Universities (No. 2019CDJGFCL004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Hua Wang or Xin-Lu Li.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.98 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SH., Ding, J., Wang, RH. et al. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 40, 3520–3530 (2021). https://doi.org/10.1007/s12598-021-01739-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01739-8

Keywords

Navigation