Skip to main content
Log in

Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform Co x O y nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the Co x O y nanoparticles and their detaching from the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

    Article  Google Scholar 

  2. Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Recent progress in nanostructured electrocatalysts for PEM fuel cells. J. Mater. Chem. A 2013, 1, 4631–4641.

    Article  Google Scholar 

  3. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

    Article  Google Scholar 

  4. Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    Article  Google Scholar 

  5. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.

    Article  Google Scholar 

  6. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  7. Zhou, X. J.; Qiao, J. L.; Yang, L.; Zhang, J. J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1301523.

    Article  Google Scholar 

  8. Wang, D.-W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

    Article  Google Scholar 

  9. Yao, Y. F.; You, Y.; Zhang, G. X.; Liu, J. G.; Sun, H. R.; Zou, Z. G.; Sun, S. H. Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: Structure-regulating oxygen sorption. ACS Appl. Mater. Interfaces 2016, 8, 6464–6471.

    Article  Google Scholar 

  10. Zhang, J. L.; Chen, G. L.; Zhang, Q.; Kang, F.; You, B. Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 12760–12766.

    Article  Google Scholar 

  11. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mullen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

    Article  Google Scholar 

  12. Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.

    Article  Google Scholar 

  13. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  14. Ren, G. Y.; Li, Y.; Guo, Z. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in onestep ball milling, Nano Res. 2015, 8, 3461–3471.

  15. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  16. Gao, R.; Li, Z. Y.; Zhang, X. L.; Zhang, J. C.; Hu, Z. B.; Liu, X. F. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li–O2 batteries. ACS Catal. 2016, 6, 400–406.

    Article  Google Scholar 

  17. Zhang, X. L.; Gao, R.; Li, Z. Y.; Hu, Z. B.; Liu, H. Y.; Liu, X. F. Enhancing the performance of CoO as cathode catalyst for Li-O2 batteries through confinement into bimodal mesoporous carbon. Electrochim. Acta. 2016, 201, 134–141.

    Article  Google Scholar 

  18. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  Google Scholar 

  19. Monzon, L. M. A.; Rode, K.; Venkatesan, M.; Coey, J. M. D. Electrosynthesis of iron, cobalt, and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction. Chem. Mater. 2012, 24, 3878–3885.

    Article  Google Scholar 

  20. Zhang, T. R.; Cheng, F. Y.; Du, J.; Hu, Y. X.; Chen, J. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation. Adv. Energy Mater. 2015, 5, 1400654.

    Article  Google Scholar 

  21. Sun, M.; Dong, Y. Z.; Zhang, G.; Qu, J. H.; Li, J. H. a-Fe2O3 spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 13635–13640.

    Article  Google Scholar 

  22. Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanoltolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408–2412.

    Article  Google Scholar 

  23. Lv, L.-B.; Ye, T.-N.; Gong, L.-H.; Wang, K.-X.; Su, J.; Li, X.-H.; Chen, J.-S. Anchoring cobalt nanocrystals through the plane of graphene: Highly integrated electrocatalyst for oxygen reduction reaction. Chem. Mater. 2015, 27, 544–549.

    Article  Google Scholar 

  24. Bag, S.; Roy, K.; Gopinath, C. S.; Raj, C. R. Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl. Mater. Interfaces 2014, 6, 2692–2699.

    Article  Google Scholar 

  25. Feng, J.; Liang, Y. Y.; Wang, H. L.; Li, Y. G.; Zhang, B.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718–725.

    Article  Google Scholar 

  26. Banham, D.; Ye, S. Y.; Pei, K.; Ozaki, J. I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of nonprecious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348.

    Article  Google Scholar 

  27. Pinna, N.; Knez, M. Atomic Layer Deposition of Nanostructured Materials; Wiley-VCH: Weinheim, Germany, 2011.

    Book  Google Scholar 

  28. Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 2007, 19, 3425–3438.

    Article  Google Scholar 

  29. Tong, X. L.; Qin, Y.; Guo, X. Y.; Moutanabbir, O.; Ao, X. Y.; Pippel, E.; Zhang, L. B.; Knez, M. Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials. Small 2012, 8, 3390–3395.

    Article  Google Scholar 

  30. Yang, F.; Zhang, L. B.; Zuzuarregui, A.; Gregorczyk, K.; Li, L.; Beltrán, M.; Tollan, C.; Brede, J.; Rogero, C.; Chuvilin, A. et al. Functionalization of defect sites in graphene with RuO2 for high capacitive performance. ACS Appl. Mater. Interfaces 2015, 7, 20513–20519.

    Article  Google Scholar 

  31. Puurunen, R. L.; Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. J. Appl. Phys. 2004, 96, 7686–7695.

    Article  Google Scholar 

  32. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  Google Scholar 

  33. Fei, B.; Qian, B. T.; Yang, Z. Y.; Wang, R. H.; Liu, W. C.; Mak, C. L.; Xin, J. H. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 2008, 46, 1795–1797.

    Article  Google Scholar 

  34. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  Google Scholar 

  35. Malecki, A.; Tareen, J. A. K.; Doumerc, J. P.; Rabardel, L.; Launay, J. C. Kinetics of thermal decomposition of Co3O4 powder and single crystals. J. Solid State Chem. 1985, 56, 49–57.

    Article  Google Scholar 

  36. Malecki, A.; Doumerc, J. P. Kinetics of thermal decomposition of Co3O4 powder and single crystals: The kinetic model. J. Therm. Anal. 1990, 36, 215–222.

    Article  Google Scholar 

  37. Toniolo, J. C.; Takimi, A. S.; Bergmann, C. P. Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 2010, 45, 672–676.

    Article  Google Scholar 

  38. Domínguez, M.; Taboada; E.; Idriss, H.; Molins, E.; Llorca, J. Fast and efficient hydrogen generation catalyzed by cobalt talc nanolayers dispersed in silica aerogel. J. Mater. Chem. 2010, 20, 4875–4883.

    Article  Google Scholar 

  39. Ho, C. T.; Weng, T. H.; Wang, C. Y.; Yen, S. J.; Yew, T. R. Tunable band gaps of Co3-xCuxO4 nanorods with various Cu doping concentrations. RSC Adv. 2014, 4, 20053–20057.

    Article  Google Scholar 

  40. Petitto, S. C.; Marsh, E. M.; Carson, G. A.; Langell, M. A. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J. Mol. Catal. A Chem. 2008, 281, 49–58.

    Article  Google Scholar 

  41. Cui, J. W.; Zhang, X. Y.; Tong, L.; Luo, J. B.; Wang, Y.; Zhang, Y.; Xie, K.; Wu, Y. C. Facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 10425–10431.

    Article  Google Scholar 

  42. Qiao, L.; Xiao, H. Y.; Meyer, H. M.; Sun, J. N.; Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.; Ivanov, I. N.; Yoon, M.; Weber, W. J. et al. Nature of the band gap and origin of the electro-/photo-activity of Co3O4. J. Mater. Chem. C 2013, 1, 4628–4633.

    Article  Google Scholar 

  43. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  44. Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.

    Article  Google Scholar 

  45. Chao, S. J.; Cui, Q.; Bai, Z. Y.; Yan, H. Y.; Wang, K.; Yang, L. Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst. Int. J. Hydrogen Energy 2014, 39, 14768–14776.

    Article  Google Scholar 

  46. Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054–1064.

    Article  Google Scholar 

  47. Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

    Article  Google Scholar 

  48. Wang, Z. J.; Li, B.; Ge, X. M.; Goh, F. W. T.; Zhang, X.; Du, G. J.; Wuu, D.; Liu, Z. L.; Andy Hor, T. S.; Zhang, H. et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016, 12, 2580–2587.

    Article  Google Scholar 

  49. Li, Y. Y.; Cheng, F. Y.; Zhang, J.; Chen, Z. M.; Xu, Q.; Guo, S. J. Cobalt-carbon core-shell nanoparticles aligned on wrinkle of N-doped carbon nanosheets with Pt-like activity for oxygen reduction. Small 2016, 12, 2839–2845.

    Article  Google Scholar 

  50. Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087–4091.

    Article  Google Scholar 

  51. Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. Mn x O y /NC and Co x O y /NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Spanish Ministry of Economy and Competitivity (MINECO) (Nos. MAT2016-77393-R and MAT2013-46593-C6-4-P) and the Basque government (Nos. PI2013-56 and IT-621-13). M. K. acknowledges financial support through Marie Curie Actions (CIG) within project number 322158 (ARTEN). The authors also want to thank Dr. Jens Brede for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbing Zhang.

Electronic supplementary material

12274_2016_1269_MOESM1_ESM.pdf

Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Abadia, M., Chen, C. et al. Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon. Nano Res. 10, 97–107 (2017). https://doi.org/10.1007/s12274-016-1269-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1269-5

Keywords

Navigation