Skip to main content
Log in

Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti–48Al–xNb alloys were solidified by containerless electromagnetic levitation with quenching system of the conical copper mold. The influence of cooling rates on phase selection of Ti–48Al–xNb alloys was investigated. In near-equilibrium solidification condition, the dendrite β phase is observed as the leading phase. No other metastable phase (e.g., α phase) is observed. In contrast, in rapid solidification condition, the metastable α phase is observed in as-quenched Ti–48Al–2Nb alloy. Furthermore, the metastable α phase is replaced by the primary β phase with Nb addition increasing. For Ti–48Al–(x = 4, 6, 8)Nb alloys, increasing cooling rate results in a solidification path transition. The peritectic reaction (L + β → α) is therefore significantly suppressed. The relationships between primary dendrite arm spacing (λ 1) and cooling rate (τ) can be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin YZ, Fu GS, Cao R, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl based alloys. Rare Met. 2014;38(2):334.

    Google Scholar 

  2. Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191.

    Article  CAS  Google Scholar 

  3. Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.

    Article  Google Scholar 

  4. Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.

    Article  CAS  Google Scholar 

  5. Han JC, Xiao SL, Tian J, Chen YY, Xu LJ, Wang XP, Jia Y, Cao SZ. Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment. Rare Met. 2016;35(1):26.

    Article  CAS  Google Scholar 

  6. Leonard KJ, Vasudevan VK. Phase equilibria and solid state transformations in Nb-rich Nb–Ti–Al intermetallic alloys. Intermetallics. 2000;8(9):1257.

    Article  CAS  Google Scholar 

  7. Kim YW. Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM. 1994;46(7):30.

    Article  CAS  Google Scholar 

  8. Imayev V, Khismatullin T, Oleneva T, Imayev R, Valiev R, Wunderlich R. Grain refinement in cast Ti–46Al–8Nb and Ti–46Al–8Ta alloys via massive transformation. Adv Eng Mater. 2008;10(12):1095.

    Article  CAS  Google Scholar 

  9. Prasad U, Xu Q, Chaturvedi MC. Effect of cooling rate and manganese concentration on phase transformation in Ti–45 at% Al based alloys. Mater Sci Eng A. 2002;329–331:906.

    Article  Google Scholar 

  10. Prasad U, Chaturvedi MC. Influence of alloying elements on the kinetics of massive transformation in gamma titanium aluminides. Metall Mater Trans A. 2003;34(10):2053.

    Article  Google Scholar 

  11. Dey SR, Hazotte A, Bouzy E. Crystallography and phase transformation mechanisms in TiAl-based alloys—a synthesis. Intermetallics. 2009;17(12):1052.

    Article  CAS  Google Scholar 

  12. Shuleshova O, Woodcock T, Lindenkreuz H, Hermann R, Loser W, Buchner B. Metastable phase formation in Ti–Al–Nb undercooled melts. Acta Mater. 2007;55(2):681.

    Article  CAS  Google Scholar 

  13. Hu XW, Li SM, Chen WJ, Gao SF, Liu L, Fu HZ. Primary dendrite arm spacing during unidirectional solidification of Pb–Bi peritectic alloys. J Alloys Compd. 2009;484(1):631.

    Article  CAS  Google Scholar 

  14. Gadırlı E, Kaya H, Gündüz M. Directional solidification and characterization of the Cd–Sn eutectic alloy. J Alloys Compd. 2007;431(1):171.

    Article  Google Scholar 

  15. Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.

    Article  CAS  Google Scholar 

  16. Fan JL, Li XZ, Su YQ, Guo JJ, Fu HZ. Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Mater Des. 2012;34:552.

    Article  CAS  Google Scholar 

  17. Lapin J, Gabalcova Z, Pelachova T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti–46Al–8Nb alloy. Intermetallics. 2011;19(3):396.

    Article  CAS  Google Scholar 

  18. Fu PX, Kang XH, Ma YC, Liu K, Li DZ, Li YY. Centrifugal casting of TiAl exhaust valves. Intermetallics. 2008;16(2):130.

    Article  CAS  Google Scholar 

  19. Chai LH. Microstructral evolution of rapidly solidified TiAl based alloys. Harbin: Harbin Institute of Technology; 2010. 67.

    Google Scholar 

  20. Bisen KB, Arenas M, El-Kaddah N, Acoff VL. Computation and validation of weld pool dimensions and temperature profiles for gamma TiAl. Metall Mater Trans A. 2003;34(10):2273.

    Article  Google Scholar 

  21. Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.

    Article  CAS  Google Scholar 

  22. Schwaighofer E, Rashkova B, Clemens H, Stark A, Mayer S. Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics. 2014;46:173.

    Article  CAS  Google Scholar 

  23. Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A, Založnik M. Microsegregation, macrosegregation and related phase transformations in TiAl alloys. Intermetallics. 2011;19(6):749.

    Article  CAS  Google Scholar 

  24. Hunt JD. Cellular and Primary Dendrite Spacings. Solidification and Casting of Metals. London: Metals Society; 1979. 1923.

    Google Scholar 

  25. Kurz W, Fisher DJ. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.

    Article  CAS  Google Scholar 

  26. Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.

    Article  CAS  Google Scholar 

  27. Liu DR, Guo JJ, Wu SP, Su YQ, Fu HZ. Stochastic modeling of columnar-to-equiaxed transition in Ti–(45–48 at%) Al alloy ingots. Mater Sci Eng A. 2006;415(1):184.

    Article  Google Scholar 

  28. Yao WJ, Wei BB. Rapid growth of nickel dendrite in highly undercooled Ni–Mo alloys. Sci China Ser E. 2003;46(6):593.

    Article  CAS  Google Scholar 

  29. Fu HZ, Geng XG. High rate directional solidification and its application in single crystal superalloys. Sci Technol Adv Mater. 2001;2(1):197.

    Article  CAS  Google Scholar 

  30. Kim JH, Kim SW, Lee HN, Oh MH, Inui H, Wee DM. Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys. Intermetallics. 2005;13(10):1038.

    Article  CAS  Google Scholar 

  31. Su YQ, Liu C, Li XZ, Guo JJ, Li BS, Jia J, Fu HZ. Microstructure selection during the directionally peritectic solidification of Ti–Al binary system. Intermetallics. 2005;13(3):267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51401168) and the 111 Project (the Discipline Innovative Engineering Plan) of Northwestern Polytechnical University (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Hu, R., Yang, JR. et al. Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates. Rare Met. 42, 288–295 (2023). https://doi.org/10.1007/s12598-017-0909-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0909-6

Keywords

Navigation