Skip to main content
Log in

Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of Al content on the microstructure and solidification characteristics of Ti–Al–Nb–V–Cr alloys in as-cast and isothermally treated states was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive spectroscope (EDS), and transmission electron microscopy (TEM). The typical solidification characteristics are due to the joint influence of both the crystal temperature range and the solidification path. The wide crystallization temperature range contributes to obtaining coarse dendrites in the as-cast Ti47Al7Nb2.5V1.0Cr (at%) alloy solidifying through the peritectic reaction. The β-solidifying Ti46Al7Nb2.5V1.0Cr (at%) alloy with the narrow crystallization temperature range is attributed to the formation of a homogeneous fine-grained microstructure. However, the crystallization temperature range of Ti48Al7Nb2.5V1.0Cr (at%) alloy is equivalent to that of Ti46Al7Nb2.5V1.0Cr alloy, but it is solidified by peritectic reaction, leading to the formation of finer dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu XH. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14(10):1114.

    Article  Google Scholar 

  2. Yang C, Jiang H, Hu D, Huang A, Dixon M. Effect of boron concentration on phase transformation texture in as-solidified Ti44Al8NbxB. Scripta Mater. 2012;67(1):85.

    Article  Google Scholar 

  3. Hu D, Botten RR. Phase transformations in some TiAl-based alloys. Intermetallics. 2002;10(7):701.

    Article  Google Scholar 

  4. Kim JH, Kim SW, Lee HN, Oh MH, Inui H, Wee DM. Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys. Intermetallics. 2005;13(10):1038.

    Article  Google Scholar 

  5. Johnson DR, Chihara K, Inui H, Yamaguchi M. Microstructural control of TiAl–Mo–B alloys by directional solidification. Acta Mater. 1998;46(18):6529.

    Article  Google Scholar 

  6. Qi WJ, Wang SC, Chen XM, Nong D, Zhou Z. Effective nucleation phase and grain refinement mechanism of Al-5Ti-1B master alloy. Chin J Rare Metals. 2013;37(2):179.

    Google Scholar 

  7. Singh AK, Muraleedharan K, Banerjee D. Solidification structure in a cast γ alloy. Scripta Mater. 2003;48(6):767.

    Article  Google Scholar 

  8. Huang L, Liaw PK, Liu CT, Liu Y, Huang JS. Microstructural evolution of (TiAl) + Nb + W + B alloy. Trans Nonferrous Met Soc China. 2011;21(10):2192.

    Article  Google Scholar 

  9. Su YQ, Liu C, Li XZ, Guo JJ, Li BS, Jia J, Fu HZ. Microstructure selection during the directionally peritectic solidification of Ti–Al binary system. Intermetallics. 2005;13(3):267.

    Article  Google Scholar 

  10. Zhang YG, Han YF, Chen GL, Guo JT, Wan XJ, Feng T. Intermetallic Compound Structure Material, National Defense. Beijing: Industry Press; 2001. 701.

    Google Scholar 

  11. Wang Y, Liu Y, Yang GY, Li HZ, Tang B. Microstructure of cast γ-TiAl based alloy solidified from β phase region. Trans Nonferrous Met Soc China. 2011;21(2):215.

    Article  Google Scholar 

  12. Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.

    Article  Google Scholar 

  13. Daloz D, Hecht U, Zollinger J, Combeau H, Hazotte A. Microsegregation, macrosegregation and related phase transformations in TiAl alloys. Intermetallics. 2011;19(6):749.

    Article  Google Scholar 

  14. Liu GH, Li XZ, Su YQ, Chen RR, Gou JJ, Fu HZ. Microstructure and microsegregation in directionally solidified Ti−46Al−8Nb alloy. Trans Nonferrous Met Soc China. 2012;22(6):1342.

    Article  Google Scholar 

  15. Jung IS, Jang HS, Oh MH, Lee JH, Wee DM. Microstructure control of TiAl alloys containing β stabilizers by directional solidification. Mater Sci Eng A. 2002;329–331(6):13.

    Article  Google Scholar 

  16. Ding XF, Lin JP, Zhang LQ, Su YQ, Hao GJ, Chen GL. A closely-complete peritectic transformation during directional solidification of a Ti-45Al-8.5Nb alloy. Intermetallics. 2011;19(8):1115.

    Article  Google Scholar 

  17. Huang ZW. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scripta Mater. 2005;52(10):1021.

    Article  Google Scholar 

  18. Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2011CB605503) and the Program of Introducing Talents of Discipline to Universities (No.B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hu, R., Kou, HC. et al. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 34, 381–386 (2015). https://doi.org/10.1007/s12598-014-0416-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0416-y

Keywords

Navigation